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Summary
Background Gadolinium-based contrast agents (GBCAs) are widely used to enhance tissue contrast during MRI scans 
and play a crucial role in the management of patients with cancer. However, studies have shown gadolinium deposition 
in the brain after repeated GBCA administration with yet unknown clinical significance. We aimed to assess the 
feasibility and diagnostic value of synthetic post-contrast T1-weighted MRI generated from pre-contrast MRI sequences 
through deep convolutional neural networks (dCNN) for tumour response assessment in neuro-oncology.

Methods In this multicentre, retrospective cohort study, we used MRI examinations to train and validate a dCNN for 
synthesising post-contrast T1-weighted sequences from pre-contrast T1-weighted, T2-weighted, and fluid-attenuated 
inversion recovery sequences. We used MRI scans with availability of these sequences from 775 patients with 
glioblastoma treated at Heidelberg University Hospital, Heidelberg, Germany (775 MRI examinations); 260 patients 
who participated in the phase 2 CORE trial (1083 MRI examinations, 59 institutions); and 505 patients who participated 
in the phase 3 CENTRIC trial (3147 MRI examinations, 149 institutions). Separate training runs to rank the importance 
of individual sequences and (for a subset) diffusion-weighted imaging were conducted. Independent testing was 
performed on MRI data from the phase 2 and phase 3 EORTC-26101 trial (521 patients, 1924 MRI examinations, 
32 institutions). The similarity between synthetic and true contrast enhancement on post-contrast T1-weighted MRI 
was quantified using the structural similarity index measure (SSIM). Automated tumour segmentation and volumetric 
tumour response assessment based on synthetic versus true post-contrast T1-weighted sequences was performed in 
the EORTC-26101 trial and agreement was assessed with Kaplan-Meier plots.

Findings The median SSIM score for predicting contrast enhancement on synthetic post-contrast T1-weighted sequences 
in the EORTC-26101 test set was 0·818 (95% CI 0·817–0·820). Segmentation of the contrast-enhancing tumour from 
synthetic post-contrast T1-weighted sequences yielded a median tumour volume of 6·31 cm³ (5·60 to 7·14), thereby 
underestimating the true tumour volume by a median of –0·48 cm³ (–0·37 to –0·76) with the concordance correlation 
coefficient suggesting a strong linear association between tumour volumes derived from synthetic versus true post-
contrast T1-weighted sequences (0·782, 0·751–0·807, p<0·0001). Volumetric tumour response assessment in the 
EORTC-26101 trial showed a median time to progression of 4·2 months (95% CI 4·1–5·2) with synthetic post-contrast 
T1-weighted and 4·3 months (4·1–5·5) with true post-contrast T1-weighted sequences (p=0·33). The strength of the 
association between the time to progression as a surrogate endpoint for predicting the patients’ overall survival in the 
EORTC-26101 cohort was similar when derived from synthetic post-contrast T1-weighted sequences (hazard ratio  
of 1·749, 95% CI 1·282–2·387, p=0·0004) and model C-index (0·667, 0·622–0·708) versus true post-contrast T1-weighted 
MRI (1·799, 95% CI 1·314–2·464, p=0·0003) and model C-index (0·673, 95% CI 0·626–0·711).

Interpretation Generating synthetic post-contrast T1-weighted MRI from pre-contrast MRI using dCNN is feasible 
and quantification of the contrast-enhancing tumour burden from synthetic post-contrast T1-weighted MRI allows 
assessment of the patient’s response to treatment with no significant difference by comparison with true post-contrast 
T1-weighted sequences with administration of GBCAs. This finding could guide the application of dCNN in radiology 
to potentially reduce the necessity of GBCA administration.
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Introduction
Intravenous administration of gadolinium-based contrast 
agents (GBCAs) is a standard procedure in diagnostic MRI 

examinations, in which it allows for the identification of 
pathological tissue changes through the extravasation of 
contrast media.1 In general, GBCAs present a very good 
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safety profile, with mild adverse reactions in only 0·7–2·4% 
of cases and a very low rate of severe complications 
in 0·03% of cases,2 coupled with a low risk of nephrogenic 
systemic fibrosis even for patients with relatively limited 
renal functionality.3 However, studies have shown 
gadolinium deposition in the brain after repeated GBCA 
adminis tration,4 which has sparked debates on the safety 
profile of contrast agents.5 Consequently, the potential 
risks of GBCAs must be weighed against the clinical 
benefit and the diagnostic information that GBCAs can 
provide for each individual patient. Previous research 
efforts have explored potential alternatives to reduce or 
bypass the need of GBCA administration during MRI. 
Specifically, for brain MRI, preliminary studies have 
shown that the dose of GBCA can be reduced 10-fold if 
artificial neural networks are used to synthesise full-dose 
post-contrast MRI sequences and preserve the contrast 
information that would have otherwise only been available 
with the full-dose GBCA administration.6 Hypothesis 
generating studies have also explored the potential of 
artificial neural networks for synthesising post-contrast 
MRI sequences from pre-contrast MRI sequences alone, 
thereby potentially bypassing the need of GBCA for 
particular applications such as brain tumour imaging.7,8 

Despite this interesting concept of synthesising post-
contrast MRI sequences from pre-contrast MRI sequences, 
there are currently no independent large-scale studies on 
heterogeneous multi-institutional datasets and assessment 
of its diagnostic value for clinical decision making.

In this study, we used MRI data from two phase 2 and 
two phase 3 clinical trials in neuro-oncology9–12 alongside 
retrospective institutional data with more than 
2000 patients from over 200 institutions to robustly 
assess the potential of artificial neural networks for 
synthesising post-contrast MRI sequences from pre-
contrast MRI sequences. Specifically, we compared 
two popular artificial neural network architectures, 
namely U-Net convolutional neural networks (U-Net)13 
and conditional general adversarial neural networks 
(CGAN)14 for generating synthetic post-contrast MRI and 
assess its diagnostic performance for tumour response 
assessment in neuro-oncology.

Methods
Study design and participants
In this multicentre, retrospective cohort study, we 
analysed MRI data from patients with glioblastoma 
acquired from four cohorts, one cohort from Heidelberg 

Research in context

Evidence before this study
Gadolinium-based contrast agents (GBCAs) are widely used to 
enhance tissue contrast during MRI and are crucial in the 
management of patients with cancer, enabling accurate 
identification, characterisation, and staging of tumours. 
Although GBCAs have a very good safety profile, previous studies 
have showed gadolinium deposition in the brain after repeated 
GBCA administration with yet unknown clinical significance. 
Based on this evidence, the European Medicines Agency 
restricted the use of some linear GBCAs used in MRI and 
suspended the authorisation of others in 2017. Studies have 
explored potential alternatives to reduce or bypass the need of 
GBCA administration during MRI. In this study, we developed 
deep convolutional neural networks (dCNN) for generating 
synthetic post-contrast T1-weighted MRI from the information 
available within pre-contrast MRI sequences—ie, without 
administration of GBCAs. We assessed the potential clinical use 
of synthetic post-contrast T1-weighted MRI in oncological 
imaging by training, validating, and testing the dCNN on MRI 
data from three clinical trials in neuro-oncology and institutional 
data with more than 2000 patients from over 200 institutions 
and evaluated the diagnostic value of synthetic post-contrast 
T1-weighted MRI for tumour response assessment as an initial 
use case. We searched PubMed on Feb 20, 2021, with no date or 
language restrictions on publications, with the search terms 
(“synthetic“ OR “virtual”) AND (“contrast”) AND (“oncology” OR 
“oncological”). Our search did not identify articles that evaluated 
the diagnostic value of synthetic post-contrast T1-weighted MRI 
for tumour response assessment in oncology.

Added value of this study
We show the feasibility and clinical potential of dCNN for 
generating synthetic post-contrast T1-weighted MRI sequences 
from pre-contrast MRI sequences in neuro-oncology without 
administration of GBCAs. Specifically, the use of synthetic post-
contrast T1-weighted sequences for volumetric quantification 
of the contrast-enhancing tumour burden and assessment of 
the treatment response in independent large-scale test sets 
yielded no significant difference in the time to progression as 
compared with using true post-contrast T1-weighted 
sequences with administration of GBCAs. Moreover, the 
strength of assocation between the time to progression as 
surrogate endpoint for predicting the patients’ overall survival 
was similar when derived from synthetic versus true post-
contrast T1-weighted sequences.

Implications of all the available evidence
Our results show that synthetic post-contrast T1-weighted 
MRI sequences generated from pre-contrast MRI-sequences 
using dCNN is feasible and quantification of the contrast-
enhancing tumour burden from synthetic post-contrast 
T1-weighted MRI allows assessment of the patient’s response 
to treatment with no significant difference as compared with 
using true post-contrast T1-weighted sequences with 
administration of GBCAs. This approach could serve as a 
blueprint for application of dCNN in radiology to potentially 
reduce the necessity of GBCA administration.
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University Hospital (Heidelberg cohort; Heidelberg, 
Germany) and three cohorts from the following clinical 
trials: the multicentre phase 2 CORE trial (CORE cohort; 
NCT00813943),11 the multicentre phase 3 CENTRIC trial 
(CENTRIC cohort; NCT00689221),12 and the multicentre 
phase 2 and phase 3 EORTC 26101 trial (EORTC-26101 
cohort; NCT01290939; appendix p 2; figure 1).9,10 MRI 
examinations for each cohort included T1-weighted 
images before and after contrast agent administration, 
fluid-attenuated inversion recovery (FLAIR) and 
T2-weighted images (all either acquired three dimen-
sional [3D] or with axial orientation) and for a subset of 
examinations also diffusion-weighted imaging with 
apparent diffusion coefficient (ADC) maps. Retrospective 
evaluation of the Heidelberg cohort was approved by the 
local ethics committee of the University of Heidelberg 
and informed consent was waived (reference S-784 
2018); evaluation of the CENTRIC, CORE, and 
EORTC-26101 cohorts was granted through an external 
research project (reference ERP-263 and ERP-362) with 
the European Organisation for Research and Treatment 
of Cancer.

The Heidelberg cohort consisted of 775 MRI exam-
inations from a single timepoint from 775 patients 
(ie, one MRI examination per patient) either pre-
operatively from initial diagnosis (n=580 [75%]), early 
postoperatively (<72 h after surgery; n=57 [7%]), or at 
disease recurrence (n=138 [18%]) in patients with 
histologically confirmed glioblastoma. For a subset of 
358 (46%) MRI examinations, ADC maps were included 
besides pre-contrast anatomical images.

The CORE11 and CENTRIC12 studies were prospective 
multicentre randomised phase 2 and 3 trials in patients 
with newly diagnosed glioblastoma comparing standard 
chemoradiotherapy with or without anti-angiogenic 
treatment with cilengitide. MRI examinations were 
acquired at baseline before radiotherapy (ie, post-
operatively), 4 weeks after radiotherapy, and at 18, 26, and 
34 weeks and every 12 weeks thereafter during the follow-
up phase.

The EORTC-26101 study9,10 was a prospective multi-
centre randomised phase 2 and 3 trial in patients with 
first progression of a glioblastoma after standard 
chemoradiotherapy evaluating the optimal treatment 
sequence of bevacizumab and lomustine. MRI 
examinations were acquired at baseline and every 6 weeks 
until week 24, and every 3 months afterwards. 

Overall, 260 patients with 1083 MRI examinations 
from 58 institutions from the CORE study, 505 patients 
with 3147 MRI examinations from 139 institutions from 
the CENTRIC study, and 521 patients with 1924 MRI 
examinations from 32 institutions from the EORTC-26101 
study had complete availability of anatomical MRI 
sequences (T1-weighted images before and after contrast 
agent administration, FLAIR and T2-weighted images) 
following image pre-processing and were included in 
this analysis (figure 1). A detailed description of the 

inclusion and exclusion criteria of the MRI data are 
outlined in the appendix (p 2). A subset of MRI 
examinations in the CORE cohort (137 [12%] of 1083; 
52 patients from 18 institutions), the CENTRIC cohort 
(548 [17%] of 3147; 170 patients from 66 institutions), and 
in the EORTC-26101 cohort (1685 [87%] of 1924; 

Figure 1: Flowchart of the procedures for training, validation, independent testing, and statistical analysis 
for generating synthetic contrast T1-weighted MRI using deep convolutional neural networks
ADC=apparent diffusion coefficient. CENTRIC=Cilengitide, Temozolomide, and Radiation Therapy in Treating 
Patients With Newly Diagnosed Glioblastoma and Methylated Gene Promoter Status.12 CGAN=conditional general 
adversarial neural networks. CORE=Conventional Care Versus Radioablation (Stereotactic Body Radiotherapy) for 
Extracranial Oligometastases.11 EORTC=European Organisation for Research and Treatment of Cancer.9,10  
FLAIR=fluid-attenuated inversion recovery.
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458 patients from 30 institutions) had ADC maps and 
anatomical sequences.

Cohort size for each of the included datasets in this 
retrospective study was determined by availability of 
samples and not derived from a power calculation.

Procedures
A flowchart outlining the analysis workflow is shown in 
figure 1 and complies with the Checklist for Artificial 
Intelligence in Medical Imaging criteria.15 The same 
image pre-processing steps (appendix p 3) were applied 
to all MRI examinations from each cohort. Specifically, 
processing included automated deep-learning-based 
brain extraction, followed by image registration as 
described in previous studies.16,17 All MRI sequences were 
resampled to an isotropic spacing of 1 × 1 × 1 mm³ and 
independently normalised to zero mean and unit 
variance. Subsequently, outliers (outside 99th percentile 
of intensity values) were clipped and image intensities 
were rescaled to the range (0–1). T1-subtraction volumes 
were generated by voxel-wise subtraction of the T1-
weighted volume from the post-contrast T1-weighted 
volume.

The study explored two different deep-learning 
approaches for the generation of synthetic post-contrast 
T1-weighted imaging (appendix pp 3–4). The first method 
involved the use of a 3D CNN based on the U-Net 
architecture.13 The U-Net model consists of an encoder 
and a decoder with skip connections between the two 
sections. The convolutional layers in each block are 
followed by batch normalisation, dropout, and rectified 
linear unit activation function. In the encoder section, the 
network aggregates semantic information at the cost of 
reduced spatial information. The decoder upsamples the 
feature maps to recover spatial information. Skip 
connections enable the decoder to make use of high-
resolution features from the contracting path. A 
combination of mean absolute error (MAE) and the 
structural similarity index measure (SSIM) loss was used 
to train the model (appendix p 14).

The second method used a CGAN-based method 
(appendix p 7) inspired by pix2pix.14 The CGAN learns a 
generative model using paired images from source and 
target domains. The CGAN model consists of a generator 
and a discriminator. The generator transforms the input 
images from the source domain to the target domain 
while the discriminator takes an input image and an 
unknown image (either generated by the generator or a 
real image) and attempts to predict if it was produced by 
the generator. During the discriminator training phase, 
the generator is kept constant and the weights of the 
discriminator are updated through backpropagation using 
the discriminator loss. Similarly, while training 
the generator, the weights of the discriminator are 
kept constant. However, the loss from discriminator 
classification is used to update the weights of the generator 
network. Additionally, hand-picked loss terms (MAE and 

SSIM loss) were included to encourage the generator to 
produce output images that are structurally similar to the 
target image (appendix p 14).

Image patches (size 160 × 176 × 32; channels x, y, z) were 
fed to both networks during the training process. The 
pre-contrast anatomical sequences from each MRI 
examination (T1-weighted, FLAIR, T2-weighted) were 
used as the input to the models and the corresponding 
T1-subtraction sequence was used as the ground truth. 
The output from the models (ie, synthetic T1-subtraction 
sequence) was added to the corresponding T1-weighted 
images to generate synthetic post-contrast T1-weighted 
images. The Heidelberg cohort, and the CENTRIC and 
CORE cohorts, were allocated for training and validation 
of the U-Net and CGAN models (with 5-fold cross-
validation and with splitting of the samples performed 
on a patient level to avoid data leakage). The performance 
of the models was then independently tested on the 
EORTC-26101 cohort using SSIM as the evaluation 
metric. Training and evaluation of the models was also 
performed using individual anatomical sequences (either 
T1-weighted, FLAIR, or T2-weighted) to deter mine their 
effect on synthetic contrast map generation. Moreover, to 
assess whether the addition of ADC maps increases the 
performance for generating synthetic post-contrast T1-
weighted sequences, both U-Net and CGAN models were 
also trained and evaluated with and without ADC images 
as an input alongside pre-contrast anatomical sequences 
(T1-weighted, FLAIR, and T2-weighted) for the subset of 
MRI examinations from each cohort with availability of 
ADC images. Sensitivity of the trained models to the type 
of MRI image acquisition (two dimensional [2D] vs 3D) 
was studied for the different MRI sequences.

Generation of synthetic post-contrast T1-weighted 
sequences for the EORTC-26101 test dataset was done 
using an ensemble approach that combines the output 
from the networks (by averaging the predictions) trained 
on different data splits (5-fold cross-validation splits). 
To determine the agreement in the segmentation of 
the contrast-enhancing tumour based on synthetic 
versus true post-contrast T1-weighted sequence, automated 
tumour segmentation was performed on the EORTC-26101 
test set as described previously using a trained 3D 
U-Net convolutional neural network model.16 There-
fore, volumetric segmentation masks with delineation 
of the contrast-enhancing tumour and the non-
enhancing T2-FLAIR hyperintense abnormality exclu ding 
the contrast-enhancing and necrotic portion of the 
tumour, resection cavity, and obvious leukoaraiosis were 
generated. The tumour segmentation process for each 
examination was performed twice: once using synthetic 
post-contrast T1-weighted sequences and once using true 
post-contrast T1-weighted sequences alongside pre-
contrast T1-weighted, T2-weighted, and FLAIR sequences 
as an input.

In the EORTC-26101 test set, volumetric tumour 
response assessment was performed as described 
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previously.16 Specifically, calculation of the time to 
progression was performed by analysing the longitudinal 
change in the contrast-enhancing tumour volumes for 
each patient using synthetic versus true post-contrast 
T1-weighted sequences. The time to progression was 
calculated from the date of randomisation and censored 
at the date of last MRI if no progression occurred during 
follow-up. Progression was defined as an increase in the 
contrast-enhancing tumour volume by 40% as compared 
with baseline or best response, which corresponds to an 
increase of the area of contrast-enhancing tumour by 25% 
determined by bi-perpendicular tumour diameters as 
defined by response assessment in neuro-oncology 
(RANO) criteria (assuming spherical configuration).18 
Moreover, measurable lesions were defined as more than 
0·524 cm³, thus equalling the 1 × 1 cm cutoff (ie, 1 cm 
diameter of a sphere) as defined by RANO.18 Additionally, 
a separate time to progression was calculated by 
incorporating the longitudinal change in the T2-FLAIR 
signal abnormality volume besides the change in the 
contrast-enhancing tumour volume as described 
previously.16

Outcomes
The present study had four main objectives. First, to 
evaluate the structural similarity of synthetic post-contrast 
T1-weighted sequences generated from pre-contrast MRI 
sequences using dCNN with the corresponding true post-
contrast T1 sequences. Second, to assess the agreement 
in contrast-enhancing tumour segmentations and 
volumes when using synthetic versus true post-contrast 
T1-weighted sequences in the EORTC-26101 test set. 
Third, to assess the time to progression when using 
synthetic versus true post-contrast T1-weighted sequences 
for tumour response assessment in the EORTC-26101 test 
set. Fourth, to compare time to progression when using 
synthetic versus true post-contrast T1-weighted sequences 
for tumour response assessment as surrogate endpoint 
for predicting overall survival within the EORTC-26101 
test set (information on overall survival taken from the 
EORTC-26101 trial database; and calculated from the date 
of randomisation until death or last follow-up).

Statistical analysis
Comparison of SSIM scores (which are a combination 
of luminance, contrast, and structural comparison 
functions)19 between the different models in the validation 
and test set was performed using the Wilcoxon matched pairs 
signed-ranks test. Specifically, the SSIM score was derived 
by comparison of the contrast enhancement on synthetic 
and true T1-weighted subtraction sequences and quantified 
the similarity on a scale of 0 (no similarity) to 1 (perfect 
similarity). The reported 95% CIs were calculated using 
bootstrapping (with n=1000 iterations) with the bias-
adjusted and accelerated bootstrap method. A sensitivity 
analysis, comparing SSIM scores in the EORTC-26101 test 
set between different image acquisition protocols 

(2D vs 3D) was performed using the Wilcoxon rank sum 
test. The agreement between the contrast-enhancing 
tumour when using synthetic versus true post-contrast 
T1-weighted sequences was evaluated with the Sørensen–
Dice similarity coefficient for segmentation agreement 
and Bland–Altman plots and concordance correlation 
coefficients for volume agreement. The reported 95% CIs 
for the median Sørensen–Dice and concordance corre-
lation coefficients were calculated using bootstrapping 
(with n=1000 iterations) with the bias-corrected and 
accelerated bootstrap method. Kaplan-Meier plots and log-
rank tests were generated to assess the agreement in the 
time to progression on a group level when using synthetic 
versus true post-contrast T1-weighted sequences. The 
strength of association of the time to progression derived 
from synthetic versus true post-contrast T1-weighted MRI 
as surrogate endpoints for predicting overall survival was 
assessed using time-dependent Cox proportional hazards 
regression models for overall survival, as described 
previously.16 Specifically, we generated Cox proportional 
hazards regression models with the time to progression 
(either derived from synthetic vs true post-contrast 
T1-weighted MRI) included as a time-dependent covariate 
alongside baseline epidemiological (patients’ age), clinical 
(glucocorticoid intake, WHO performance status), 
molecular character istics (MGMT promoter methylation 
status), and the treatment regimen20 (containing 
bevacizumab vs no bevacizumab). We assessed the 
performance of each Cox proportional hazards regression 
model with Harrell’s concordance index (c-index, with 
95% CIs calculated using boot strapping with n=1000 
iterations).

Statistical analysis was performed with R (version 4.0.3) 
and Python (3.8.3) by PV and CJP.

Role of the funding source
The funders of this study or the three clinical trials from 
which the data were obtained had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. 

Results
The compiled MRI data from patients with glioblastoma 
being treated at Heidelberg University Hospital 
(775 patients with one MRI examination each) and within 
the multi-institutional longitudinal phase 2 CORE trial 

Validation SSIM (95% CI) Test SSIM (95% CI)

CGAN 0·827 (0·826–0·829) 0·818 (0·817–0·820)

U-Net 0·809 (0·808–0·811) 0·809 (0·807–0·810)

p value <0·0001 <0·0001

p values are from a Wilcoxon signed-rank test. CGAN=conditional general 
adversarial neural networks. SSIM=structural similarity index measure.

Table 1: Comparison of the SSIM between U-Net and CGAN architecture 
on validation and test data
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(206 patients with 1083 MRI examinations from 
59 institutions) and phase 3 CENTRIC trial (505 patients 
with 3147 MRI examinations from 149 institutions) were 
allocated for training and validation of the dCNN models 
for generating synthetic post-contrast T1-weighted images 
from pre-contrast T1-weighted, T2-weighted, and FLAIR 
images (figure 1). Independent testing of the dCNN 
models on the multi-institutional longitudinal phase 2 
and phase 3 EORTC-26101 trial (521 patients with 
1924 MRI examinations from 32 institutions) yielded a 
median SSIM score of 0·809 (95% CI 0·807–0·810) for 
predicting contrast enhancement on synthetic post-
contrast T1-weighted MRI when developing the dCNN 
based on the U-Net architecture. The performance of the 
dCNN improved significantly (p<0·0001) when using a 
CGAN architecture, yielding a median SSIM score of 
0·818 (0·817–0·820) for predicting contrast enhancement 
on synthetic post-contrast T1-weighted MRI (table 1). 
Examples of the training epochs and the predicted 
contrast maps along with the corresponding ground truth 
and residual images are shown in figure 2 and the 
appendix (pp 8–9). For the CGAN architecture, 
pre-contrast T1-weighted, followed by FLAIR and 
T2-weighted sequences were ranked as most influential 
for predicting synthetic post-contrast T1-weighted 
sequences with a median SSIM of 0·811 (0·810–0·813) 
for T1-weighted, 0·746 (0·741–0·744) for FLAIR, and 
0·742 (0·741–0·744) for T2-weighted sequences on the 
EORTC-26101 test set (appendix p 15). The SSIM for 
predicting synthetic post-contrast T1-weighted sequences 
from these individual sequences was significantly lower 
than the SSIM when using a combination of pre-contrast 
T1-weighted, FLAIR, and T2-weighted sequences 
(p<0·0001 each; appendix p 15). The subset analysis for 

those examinations with availability of ADC images 
showed no improvement in the SSIM when comparing the 
inclusion of ADC in addition to pre-contrast anatomical 
MRI (T1-weighted, FLAIR, and T2-weighted) in the 
EORTC-26101 test set (p=0·73; appendix p 16). Sensitivity 
analysis in the EORTC-26101 test set showed that high-
resolution 3D image acquisition improved the 
performance of the CGAN model for predicting synthetic 
post-contrast T1-weighted MRI, yielding significantly 
higher SSIM scores as compared with 2D image 
acquisition (appendix p 17).

Automated segmentation of the contrast-enhancing 
tumour in the EORTC-26101 test set from synthetic 
post-contrast T1-weighted sequences yielded a median 
tumour volume of 6·31 cm³ (95% CI 5·60 to 7·11), 
thereby underestimating the tumour volume by a 
median of –0·48 cm³ (–0·37 to –0·76; figures 2, 3A), 
corresponding to a median underestimation of –7% as 
compared with true post-contrast T1-weighted sequences 
(median tumour volume of 6·74 cm³, 6·13 to 7·75). The 
concordance correlation coefficients, which measures 
tumour volume agreement, suggested a strong linear 
relationship (0·782, 0·751 to 0·807, p<0·0001) between 
tumour volumes derived from synthetic versus true post-
contrast T1-weighted sequences (figure 3A; appendix 
p 10). Spatial agreement in the tumour segmentation 
when using synthetic versus true post-contrast T1-
weighted sequences (median Sørensen–Dice coefficient 
of 0·28, 0·26 to 0·31]) significantly depended on the 
volume of the tumour with improved spatial agreement 
for larger tumours (r=0·438, 0·401 to 0·475, p<0·0001; 
figure 3B).

Volumetric tumour response assessment in a subset of 
the EORTC-26101 data with availability of baseline and 

Figure 2: True and synthetic post-contrast T1-weighted sequences
True post-contrast T1-weighted sequences (top) and synthetic post-contrast T1-weighted sequences (bottom) from two timepoints (baseline and follow-up MRI) in 
three illustrative cases showing increase in tumour burden. (A) Progressive disease. (B) Stable disease or decrease in tumour burden. (C) Partial response. Within each 
MRI examination the automatically generated contrast-enhancing tumour segmentation map is shown in red, with the percentual change in the contrast-enhancing 
tumour volume shown at the bottom of each follow-up examination.
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subsequent follow-up MRI examinations (386 [74%] of 
521 patients) showed a median time to progression of 
4·2 months (95% CI 4·1–5·2) with synthetic post-
contrast T1-weighted and 4·3 months (4·1–5·5) with true 
post-contrast T1-weighted sequences (p=0·33; figure 4). 
For the subset of patients with disagreement in the time 
to progression (either time or censoring status) between 
synthetic and true post-contrast T1-weighted sequences 
(181 [47%] of 386 patients) the median time to progression 
was 4·2 months (4·1–5·5) with synthetic post-contrast 
T1-weighted and 5·4 months (4·2–5·6) with true post-
contrast T1-weighted sequences (p=0·14; figure 4). 
Specifically, the use of synthetic post-contrast T1-weighted 
sequences did not detect tumour progression in 53 (14%) 
of 386 cases that was otherwise evident when using true 
post-contrast T1-weighted sequences. On the contrary, 
the use of synthetic post-contrast T1-weighted sequences 
detected tumour progression in 59 (15%) of 386 cases 
that was otherwise not evident when using true post-
contrast T1-weighted sequences.

By incorporating the longitudinal change in the volume 
of the T2-FLAIR signal abnormality as an additional 
response criterion besides the change in the volume of 
the contrast-enhancing tumour, the agreement in the 
time to progression between using synthetic or true 
post-contrast T1-weighted MRI could be improved. 
Specifically, median time to progression was 4·1 months 
(4·0–4·4) with synthetic post-contrast T1-weighted and 
4·1 months (3·7–4·2) with true post-contrast T1-weighted 
sequences (p=0·24; appendix p 11). For the subset of 
patients with disagreement in the time to progression 
(either time or censoring status) between synthetic and 

Figure 3: Contrast-enhancing tumour volumes segmented using true and synthetic post-contrast T1-weighted sequences and Sørensen–Dice coefficients
(A) Contrast-enhancing tumour volumes segmented using synthetic and true post-contrast T1-weighted sequences. (B) Sørensen–Dice coefficients (spatial 
agreement in contrast-enhancing tumour segmentation between synthetic and true post-contrast T1-weighted sequences) and contrast-enhancing tumour volumes 
obtained from true post-contrast T1-weighted sequences. CCC=concordance correlation coefficient.
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Figure 4: Time to progression in the EORTC-26101 test set
Agreement in the time to progression in the EORTC-26101 test set when performing volumetric tumour 
response assessment using synthetic post-contrast T1-weighted sequences (blue line) and true post-contrast 
T1-weighted sequences (green line). (A) All patients. (B) The subset of patients with disagreement in the time 
to progression (either time or censoring status) between synthetic and true post-contrast T1-weighted 
sequences.
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true post-contrast T1-weighted sequences (166 [43%] of 
386 patients) the median time to progression was 
4·1 months (4·1–5·1) with synthetic post-contrast 
T1-weighted and 4·4 months (4·1–5·5) with true post-
contrast T1-weighted sequences (p=0·083; appendix p 11). 
The use of synthetic post-contrast T1-weighted sequences 
did not detect tumour progression in 41 (11%) of 
386 patients that was otherwise evident when using true 
post-contrast T1-weighted sequences. On the contrary, 
the use of synthetic post-contrast T1-weighted sequences 
detected tumour progression in 48 (12%) of 386 patients 
that was otherwise not evident when using true post-
contrast T1-weighted sequences.

The time to progression when using synthetic or 
true post-contrast T1-weighted sequences for tumour 
response assessment as surrogate endpoints for 
predicting the patient’s overall survival was assessed 
with time-dependent Cox regression models adjusted 
for baseline epidemiological (patients’ age), clinical 
(glucocorticoid intake, WHO performance status), 
molecular characteristics (MGMT promoter methylation 
status), and the treatment regimen (table 2). Thereby, 
the Cox regression model for overall survival with the 
time to progression derived from synthetic post-contrast 
T1-weighted MRI as a time-dependent covariate yielded 

an hazard ratio (HR) of 1·749 (1·282–2·387, p=0·0004) 
with a Z value of 3·529 and a model c-index of 0·667 
(0·622–0·708). Similar results were obtained with the 
time to progression derived from true post-contrast 
T1-weighted MRI (HR 1·799, 1·314–2·464, p=0·0003) 
with a Z value of 3·665 and a model c-index of 0·673 
(0·626–0·711).

Discussion
In this study, we show the feasibility of dCNN for 
generating synthetic post-contrast T1-weighted sequences 
from pre-contrast MRI sequences without administration 
of GBCA. By incorporating MRI data from three phase 2 
and phase 3 clinical trials in neuro-oncology9–12 along-
side retrospective institutional data with more than 
2000 patients from over 200 institutions for training, 
validation, and independent testing of the dCNN we show 
the clinical potential of using synthetic post-contrast 
T1-weighted sequences for tumour response assessment. 
Specifically, the use of synthetic post-contrast T1-weighted 
sequences for automated longitudinal quantification of 
the contrast-enhancing tumour burden and volumetric 
tumour response assessment in the EORTC-26101 test set 
yielded no significant difference to when using true post-
contrast T1-weighted sequences with a difference of only 
0·1 months in the median time to progression across all 
patients. Moreover, the time to progression derived from 
synthetic versus true post-contrast T1-weighted sequences 
yielded equal prognostic surrogate levels for predicting 
overall survival.

The current consensus recommendations for a 
standardised brain tumour imaging protocol and the 
RANO criteria mandate the use of post-contrast 
T1-weighted MRI for evaluating the contrast-enhancing 
tumour burden.20,21 Specifically, the presence and extent 
of contrast-enhancing tumour is—alongside the non-
enhancing T2-FLAIR hyperintense tumour burden and 
relevant clinical parameters—a key criterion for assessing 
the response to treatment and for determining the time 
to progression in neuro-oncology clinical trials and in 
routine clinical practice.21 A survey across 220 institutions 
in Europe underlined the central importance of post-
contrast T1-weighted MRI in brain tumour imaging 
with more than 99% of these institutions routinely 
administering GBCA for acquiring post-contrast 
T1-weighted MRI.22 However, previous studies have 
found that repeated administration of GBCA can lead 
to deposition of residual gadolinium in the brain.4 
Specifically, deposition of GBCA in the brain was found 
to be highly dependent on the chemical properties of the 
agent, with the administration of linear GBCAs resulting 
in a 15-times higher concentration of gadolinium in the 
brain as compared with macrocyclic GBCAs.23 Although 
the clinical significance of the retained gadolinium in 
the brain remains unknown, the European Medicines 
Agency has subsequently restricted the use of some 
linear gadolinium agents used in MRI and suspended 

Point estimate (95% CI) Z value* p value

Synthetic post-contrast T1-weighted MRI sequences

Volumetric time to progression1 HR 1·749 (1·282–2·387) 3·529 0·0004

Baseline characteristics

Treatment regimen (BEV yes or no)2 HR 1·068 (0·791–1·441) 0·433 0·67

Glucocorticoid intake (yes or no)3 HR 1·710 (0·860–1·361) 3·470 0·00052

WHO Performance Status (>0 or 0)4 HR 1·362 (1·263–2·316) 1·864 0·062

Age (years)5 HR 1·007 (0·991–1·021) 0·866 0·39

MGMT promoter methylation status 
(methylated or unmethylated)6

HR 0·681 (0·512–0·907) –2·633 0·0085

C-index of the model 0·667 (0·622–0·708) ·· ··

True post-contrast T1-weighted MRI sequences

Volumetric time to progression† HR 1·799 (1·314–2·464) 3·665 0·0003

Baseline characteristics

Treatment regimen (BEV yes or no)2 HR 1·016 (0·874–1·388) 0·106 0·92

Glucocorticoid intake (yes or no)3 HR 1·081 (1·331–2·448) 3·800 0·00015

WHO Performance Status (>0 or 0)4 HR 1·433 (1·033–1·989) 2·152 0·031

Age (years)5 HR 1·006 (0·991–1·021) 0·800 0·42

MGMT promoter methylation status 
(methylated or unmethylated)6

HR 0·714 (0·535–0·954) –2·279 0·023

C-index of the model 0·673 (0·626–0·711) ·· ··

The time to progression based on synthetic post-contrast T1-weighted MRI sequences versus true post-contrast 
T1-weighted MRI sequences was included as a time-dependent covariate to assess the strength of association with 
overall survival. BEV=bevacizumab. C-index=Harrell’s concordance index. HR=hazard ratio. *Z value is the ratio of each 
regression coefficient to its SE. 1=time to progression is included as a time-dependent covariate; 2=included as binary 
covariate (initial treatment containing bevacizumab [n=242] vs no bevacizumab [n=144]); 3=included as binary 
covariate (glucocorticoid intake at baseline yes [n=182] vs no [n=204]); 4=included as binary covariate (WHO 
Performance Status at baseline >0 [n=255] vs 0 [n=131]); 5=included as continuous covariate (patients’ age at baseline 
[median 59, IQR 51–64 years]); 6=included as binary covariate (MGMT promoter methylation status methylated 
[n=124] vs unmethylated [n=122] with information not available for the remaining [n=140] cases).

Table 2: Cox proportional hazards regression models for overall survival in the EORTC-26101 test set
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the authorisation of others in 2017.24 Moreover, authorities 
urged health-care professionals to use GBCA only when 
essential diagnostic information cannot be obtained with 
unenhanced MRI.24 Previous exploratory studies have 
therefore focused on potential alternatives to reduce or 
bypass the need of GBCAs during MRI, which have 
included advanced MRI sequences25 or alternative 
contrast agents (eg, measuring the glucose update 
through chemical exchange saturation transfer MRI).26 
Moreover, preliminary neuroimaging studies have also 
explored the technical feasibility of using dCNN for 
synthesising post-contrast T1-weighted MRI from the 
information included in pre-contrast MRI sequences.7,8,27 
In this study we went beyond the assessment of technical 
feasibility and specifically explored the clinical use of 
these synthetic post-contrast T1-weighted sequences by 
harnessing large-scale MRI data from several previous 
clinical trials in the field of neuro-oncology9–12 alongside 
retrospective institutional data with more than 
2000 patients from over 200 institutions. Our study used 
two popular dCNN architectures, namely an encoder-
decoder architecture (U-Net) as a reference benchmark 
and a GAN architecture, which has gained substantial 
attention across multiple industries since its first 
description in 2014 by Goodfellow and colleagues28 to 
generate synthetic instances of data that can pass for real 
data (eg, for image, video, and voice generation).29 By 
applying GANs, a generator neural network was trained 
with the Heidelberg, CENTRIC, and CORE cohorts to 
produce post-contrast T1-weighted sequences based on 
pre-contrast MRI sequences. This generator neural 
network was combined with a discriminator neural 
network to distinguish the generator’s false post-
contrast T1-weighted sequences from true post-contrast 
T1-weighted sequences. For those instances where the 
discriminator could easily recognise the generator’s false 
post-contrast T1-weighted sequences as implausible, 
such as a post-contrast T1-weighted sequence that was 
clearly different from the underlying true post-contrast 
T1-weighted sequence, the generator was penalised. 
Over time, the generator learned to generate more 
plausible synthetic post-contrast T1-weighted sequences. 
We show that this technique is superior to encoder-
decoder dCNN architectures and allows to generate 
synthetic post-contrast T1-weighted sequences with a 
high structural similarity as compared with true post-
contrast T1-weighted sequences (SSIM 0·818 in the 
EORTC-26101 test set). One of the initial hypothesis-
generating studies7 suggested that ADC sequences, 
which measure the magnitude of diffusion of water 
molecules and thereby approximate the cellularity of the 
tumour,30 provide the most valuable information for the 
dCNN to synthesise the false post-contrast T1-weighted 
MRI sequences.7 In our study, including ADC beyond pre-
contrast anatomical MRI sequences for creating synthetic 
post-contrast T1-weighted MRI sequences did not 
increase the performance; instead we found that 

pre-contrast T1-weighted sequences followed by FLAIR 
and T2-weighted sequences were the most relevant. The 
lack of importance for ADC may reflect the biological 
basis of contrast enhancement in brain tumours, which 
occurs because of a non-specific increase in blood–brain 
barrier permeability and does not necessarily reflect 
active tumour (ie, high cellularity reflected by low ADC 
values).31 By contrast, the central importance of pre-
contrast T1-weighted sequences found in our study could 
be explained by the fact that the output of the dCNN (T1-
subtraction sequence) is structurally similar to the pre-
contrast T1-weighted sequence, since it is generated by 
subtracting the T1-weighted signal intensities from the 
corresponding post-contrast T1-weighted sequence. 
Moreover, the comparatively lower importance of 
T2-weighted and FLAIR sequences could additionally be 
explained by the lower image resolution and slice 
thickness of these sequences as compared with 
the T1-weighted sequences, which led to interpolation 
artifacts on T2-weighted and FLAIR sequences following 
image registration to the corre sponding T1-weighted 
sequence that was used as a reference.

The use of synthetic post-contrast T1-weighted MRI 
sequences for assessment of contrast-enhancing tumour 
burden in our study showed a strong linear relationship 
of tumour volumes derived from synthetic versus 
true post-contrast T1-weighted sequences (concordance 
correlation coefficient 0·782 in the EORTC-26101 test set, 
p<0·0001) with contrast-enhancing tumour volumes 
being underestimated by a median of –0·48 cm³ or 7% in 
the EORTC-26101 test set. Spatial agreement between 
tumour volumes derived from synthetic versus true post-
contrast T1-weighted sequences in the EORTC-26101 test 
set was moderate (median Sørensen–Dice coefficient 
of 0·28). However, this effect was largely driven by cases 
with small or absent contrast-enhancing tumour 
volumes, which were over-represented in the follow-up 
of the EORTC-26101 cohort and a negative effect on 
volumetric tumour response assessment could be 
mitigated by applying a volumetric cutoff equivalent to 
the 1 × 1 cm for measurable lesions as defined by 
RANO. Importantly, by analysing the longitudinal 
change in contrast-enhancing tumour volumes derived 
from synthetic versus true post-contrast T1-weighted 
sequences, we found that the median time to progression 
between the two approaches in the EORTC-26101 test 
set did only differ by 0·1 months. Inclusion of the 
longitudinal change in the T2-FLAIR signal abnormality 
volume as an additional response criterion further 
improved the agreement, resulting in identical median 
time to progression with the use of synthetic versus 
true post-contrast T1-weighted sequences. These results 
suggest that although contrast-enhancing tumour 
volumes are underestimated when using synthetic 
post-contrast T1-weighted sequences, quantification of 
the relative change in the longitudinal tumour burden 
resembles the information that would otherwise only be 
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available with administration of GBCA and acquisition of 
true post-contrast T1-weighted sequences. Moreover, the 
surrogate level of the time to progression derived from 
synthetic post-contrast T1-weighted MRI for predicting 
overall survival (HR 1·749, 95% CI 1·282–2·387, 
p=0·0004) was similar to the time to progression derived 
from true post-contrast T1-weighted MRI (1·799, 
1·314–2·464, p=0·0003).

Our study has some limitations. First, we acknowledge 
the retrospective nature of the study and the inclusion 
of MRI data from various scanners and acquisition 
protocols. Although the use of heterogeneous data coming 
from more than 200 institutions acquired over a 
timeframe of more than 10 years enabled very stable and 
generalisable results when facing independent test sets, it 
also intrinsically restricted the maximum possible 
performance of the dCNNs due to inconsistencies in 
data acquisition, MRI field strengths, and interpolation 
artifacts. Visual inspection of the generated synthetic post-
contrast T1-weighted images showed that although 
enhancement patterns were represented realistically, 
the overall impression of the synthetic post-contrast 
T1-weighted images was different from the original 
post-contrast T1-weighted images. Specifically, blurring of 
contrast-enhancing structures and slight over pronun-
ciation of leptomeningeal vasculature were the main 
features in the synthetic post-contrast T1-weighted images 
and were seen more frequently when artifacts were 
present in the input sequences. Nevertheless, standard-
isation efforts of MRI acquisition protocols are an ongoing 
effort in the field of neuro-oncology,20 and future large-
scale studies could improve the performance of the 
dCNNs for generating synthetic post-contrast T1-weighted 
images without compromising general isability. Second, 
although the clinical use of synthetic post-contrast 
T1-weighted MRI was shown for tumour response 
assessment in the EORTC-26101 test set, discrepancies in 
the time to progression on a per case basis need to be 
addressed in future studies. The sensitivity analysis in this 
study, which showed improved performance for 3D image 
acquisition protocols supports the importance of 
standardised acquisition protocols, and additional 
advanced MRI sequences might enable and improve the 
development of more precise prediction models. 
Third, methodological assessments should be done. To 
preserve voxel-level information, we opted for the U-Net 
architecture, as a baseline model and as a backbone 
network for the CGAN. However, fully convolutional 
networks are a suitable replacement for the U-Net and 
should be considered in the future. A comparison of 
synthetic post-contrast T1-weighted MRI based on pre-
contrast MRI sequences with those based on low-dose 
contrast media applications needs to be addressed in 
future studies and an investigation of real-time practicability 
and validity of the proposed methodology. Finally, to 
evaluate the required technical effort and practical 
usefulness in the clinical setting in real time, further 

prospective evaluations are required, which should also 
include a thorough investigation of uncertainty estimation 
methods providing an assessment of reliability to the 
practitioner. Adding robustness to eventually missing 
input sequences could be a valuable extension to the 
practical application of the proposed method, which could 
be achieved by applying channel dropout during training.

In conclusion, generating synthetic post-contrast 
T1-weighted MRI from pre-contrast MRI using dCNN is 
feasible and quantification of the contrast-enhancing 
tumour burden from synthetic post-contrast T1-weighted 
MRI allows assessment of the patient’s response to 
treatment with no significant difference as compared 
with when using true post-contrast T1-weighted 
sequences with administration of GBCAs. These findings 
could inform the application of dCNN to radiology to 
potentially reduce the necessity of GBCA administration.
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(which were used for training and validation) and the multi-
institutional data from the EORTC-26101 trial (which were used for 
independent testing) are not publicly available and restrictions apply to 
their use via the EORTC external research collaboration. The deep-
learning algorithm used in this study is not publicly available yet, but 
the authors are investigating ways of disseminating it. The authors 
agree to apply the deep-learning algorithm to data provided by other 
academic researchers on their behalf for research purposes only, 
following completion of a Material Transfer Agreement. Proposals and 
requests for data access should be directed to the corresponding author 
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