208 research outputs found

    Simulation numérique de la condensation / évaporation et de la coagulation des nanoparticules

    Get PDF
    National audienceAware of the risks related to nanoparticles (particles which present at least one dimension less than 100 nanometers), INERIS decided in 2009 to create a research program in order to develop a model that would be able to simulate the dynamic of nanoparticles in both confined and free atmospheres. The distinction with usual models is that we need to follow the evolution of the number of particles together with their the mass : in order to simulate the evolution of nanoparticles, the number is much more relevant. A comparative review of algorithms currently used in air quality models and new algorithms adapted to nanoparticles is presented. This first study addresses condensational growth, evaporation and coagulation. The model is to be integrated in chemistry-transport models (CHIMERE) and in CFD models (code_Saturne EdF).Conscient des risques liés aux nanoparticules (particules dont au moins une des dimensions est inférieure à 100 nanomètres), l'INERIS(1) a engagé en 2009 un programme de recherche en collaboration avec le CEREA(2) afin de développer un modèle capable de simuler les transformations des nanoparticules dans les ambiances intérieures (espaces confinés) comme dans l'atmosphère. En effet, les nanoparticules sont notamment susceptibles de coaguler, de grossir par condensation, et de se déposer sur les parois; ce qui modifie leur granulométrie. Une des problématiques liée à la modélisation des nanoparticules est que leur nombre est déterminant devant leur masse, tout au contraire des particules étudiées jusqu'à présent (particules fines ou grossières dont une des dimensions est supérieure à 100 nanomètre). Différents schémas numériques ont été développés pour simuler la condensation/évaporation d'une population de particules, et un noyau de coagulation issu d'algorithmes usuels a été intégré. L'inter-comparaison de ces schémas met en évidence que certains sont plus adaptés que d'autres pour les nanoparticules. Les algorithmes qui sont appropriés pour toutes les tailles de particules sont présentés. A terme, ce modèle de dynamique des nanoparticules a vocation à être intégré dans des modèles de dispersion atmosphérique (CHIMERE) et des modèles CFD (code_Saturne EdF

    Populasi Kupu-kupu (Lepidoptera ) di Pulau Mantehage, Sulawesi Utara

    Full text link
    POPULASI KUPU-KUPU (LEPIDOPTERA ) DI PULAU MANTEHAGE, SULAWESI UTARA ABSTRAK Kupu-kupu berperan penting dalam ekosistem dan dapat membantu proses penyerbukan pada tumbuhan. Penelitian ini bertujuan untuk mengkaji populasi kupu-kupu di Pulau Mantehage, Sulawesi Utara. Pengambilan sampel kupu-kupu dilakukan dari Maret sampai Mei 2013 di Pulau Mantehage, Sulawesi Utara. Kupu-kupu dikoleksi dengan menggunakan metode sweeping yang diterapkan secara acak sepanjang 500m. Hasil penelitian menunjukkan bahwa kupu-kupu di Pulau Mantehage ada 19 spesies yang termasuk ke dalam 4 famili yaitu Nymphalidae, Papilionidae, Pieridae dan Riodinidae. Spesies kupu-kupu yang paling banyak ditemukan yaitu Catopsilia scylla asema. Famili yang paling banyak ditemukan yaitu Famili Nymphalidae dengan jumlah spesies sebanyak 11 spesies. Kupu-kupu yang paling sedikit yaitu Famili Riodinidae yang memiliki jumlah satu spesies. Kata kunci : Populasi kupu-kupu, Pulau Mantehage, Sulawesi Utara. POPULATION OF BUTTERFLY (LEPIDOPTERA) IN MANTEHAGE ISLAND, NORTH SULAWESI ABSTRACT Butterfly has ecological functions for pollination and as biodicator of ecosystem change. This study was conducted for studying butterfly population in Mantehage Island, North Sulawesi. Butterfly sampling conducted in March until May 2013 in Mantehage island, North Sulawesi. Butterfly were collected by using random sweeping along 500 m. The result showed there were 19 species in 4 families i.e. Nymphalidae, Papilionidae, Pieridae dan Riodinidae. The most commonly butterfly found was Catopsilia scylla asema. The most common family was Nymphalidae with numbers of species were 11 species. The least family was Riodinidae with only 1 species

    Development of an organ failure score in acute liver failure for transplant selection and identification of patients at high risk of futility.

    Get PDF
    INTRODUCTION: King's College Hospital criteria are currently used to select liver transplant candidates in acetaminophen-related acute liver failure (ALF). Although widely accepted, they show a poor sensitivity in predicting pre-transplant mortality and cannot predict the outcome after surgery. In this study we aimed to develop a new prognostic score that can allow patient selection for liver transplantation more appropriately and identify patients at high risk of futile transplantation. METHODS: We analysed consecutive patients admitted to the Royal Free and Beaujon Hospitals between 1990 and 2015. Clinical and laboratory data at admission were collected. Predictors of 3-month mortality in the non-transplanted patients admitted to the Royal Free Hospital were used to develop the new score, which was then validated against the Beaujon cohort. The Beaujon-transplanted group was also used to assess the ability of the new score in identifying patients at high risk of transplant futility. RESULTS: 152 patients were included of who 44 were transplanted. SOFA, CLIF-C OF and CLIF-ACLF scores were the best predictors of 3-month mortality among non-transplanted patients. CLIF-C OF score and high dosages of norepinephrine requirement were the only significant predictors of 3-month mortality in the non-transplanted patients, and therefore were included in the ALF-OFs score. In non-transplanted patients, ALF-OFs showed good performance in both exploratory (AUC = 0.89; sensitivity = 82.6%; specificity = 89.5%) and the validation cohort (AUC = 0.988; sensitivity = 100%; specificity = 92.3%). ALF-OFs score was also able to identify patients at high risk of transplant futility (AUC = 0.917; sensitivity = 100%; specificity = 79.2%). CONCLUSION: ALF-OFs is a new prognostic score in acetaminophen-related ALF that can predict both the need for liver transplant and high risk of transplant futility, improving candidate selection for liver transplantation

    Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles.

    Get PDF
    Reptiles exhibit a spectacular diversity of skin colors and patterns brought about by the interactions among three chromatophore types: black melanophores with melanin-packed melanosomes, red and yellow xanthophores with pteridine- and/or carotenoid-containing vesicles, and iridophores filled with light-reflecting platelets generating structural colors. Whereas the melanosome, the only color-producing endosome in mammals and birds, has been documented as a lysosome-related organelle, the maturation paths of xanthosomes and iridosomes are unknown. Here, we first use 10x Genomics linked-reads and optical mapping to assemble and annotate a nearly chromosome-quality genome of the corn snake Pantherophis guttatus The assembly is 1.71 Gb long, with an N50 of 16.8 Mb and L50 of 24. Second, we perform mapping-by-sequencing analyses and identify a 3.9-Mb genomic interval where the lavender variant resides. The lavender color morph in corn snakes is characterized by gray, rather than red, blotches on a pink, instead of orange, background. Third, our sequencing analyses reveal a single nucleotide polymorphism introducing a premature stop codon in the lysosomal trafficking regulator gene (LYST) that shortens the corresponding protein by 603 amino acids and removes evolutionary-conserved domains. Fourth, we use light and transmission electron microscopy comparative analyses of wild type versus lavender corn snakes and show that the color-producing endosomes of all chromatophores are substantially affected in the LYST mutant. Our work provides evidence characterizing xanthosomes in xanthophores and iridosomes in iridophores as lysosome-related organelles

    Modification of macroporous titanium tracheal implants with biodegradable structures: tracking in vivo integration for determination of optimal in situ epithelialization conditions.

    Get PDF
    Previously, we showed that macroporous titanium implants, colonized in vivo together with an epithelial graft, are viable options for tracheal replacement in sheep. To decrease the number of operating steps, biomaterial-based replacements for epithelial graft and intramuscular implantation were developed in the present study. Hybrid microporous PLLA/titanium tracheal implants were designed to decrease initial stenosis and provide a surface for epithelialization. They have been implanted in New Zealand white rabbits as tracheal substitutes and compared to intramuscular implantation samples. Moreover, a basement membrane like coating of the implant surface was also designed by Layer-by-Layer (LbL) method with collagen and alginate. The results showed that the commencement of stenosis can be prevented by the microporous PLLA. For determination of the optimum time point of epithelialization after implantation, HPLC analysis of blood samples, C-reactive protein (CRP), and Chromogranin A (CGA) analyses and histology were carried out. Following 3 weeks the implant would be ready for epithelialization with respect to the amount of tissue integration. Calcein-AM labeled epithelial cell seeding showed that after 3 weeks implant surfaces were suitable for their attachment. CRP readings were steady after an initial rise in the first week. Cross-linked collagen/alginate structures show nanofibrillarity and they form uniform films over the implant surfaces without damaging the microporosity of the PLLA body. Human respiratory epithelial cells proliferated and migrated on these surfaces which provided a better alternative to PLLA film surface. In conclusion, collagen/alginate LbL coated hybrid PLLA/titanium implants are viable options for tracheal replacement, together with in situ epithelialization.journal articleresearch support, non-u.s. gov't2012 Aug2012 03 02importe

    Collagen-based fibrillar multilayer films cross-linked by a natural agent.

    Get PDF
    Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants.journal articleresearch support, non-u.s. gov't2012 Jul 092012 06 13importe

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Hybrid Titanium/Biodegradable Polymer Implants with an Hierarchical Pore Structure as a Means to Control Selective Cell Movement

    Get PDF
    UNLABELLED: In order to improve implant success rate, it is important to enhance their responsiveness to the prevailing conditions following implantation. Uncontrolled movement of inflammatory cells and fibroblasts is one of these in vivo problems and the porosity properties of the implant have a strong effect on these. Here, we describe a hybrid system composed of a macroporous titanium structure filled with a microporous biodegradable polymer. This polymer matrix has a distinct porosity gradient to accommodate different cell types (fibroblasts and epithelial cells). The main clinical application of this system will be the prevention of restenosis due to excessive fibroblast migration and proliferation in the case of tracheal implants. METHODOLOGY/PRINCIPAL FINDINGS: A microbead-based titanium template was filled with a porous Poly (L-lactic acid) (PLLA) body by freeze-extraction method. A distinct porosity difference was obtained between the inner and outer surfaces of the implant as characterized by image analysis and Mercury porosimetry (9.8±2.2 µm vs. 36.7±11.4 µm, p≤0.05). On top, a thin PLLA film was added to optimize the growth of epithelial cells, which was confirmed by using human respiratory epithelial cells. To check the control of fibroblast movement, PKH26 labeled fibroblasts were seeded onto Titanium and Titanium/PLLA implants. The cell movement was quantified by confocal microscopy: in one week cells moved deeper in Ti samples compared to Ti/PLLA. CONCLUSIONS: In vitro experiments showed that this new implant is effective for guiding different kind of cells it will contact upon implantation. Overall, this system would enable spatial and temporal control over cell migration by a gradient ranging from macroporosity to nanoporosity within a tracheal implant. Moreover, mechanical properties will be dependent mainly on the titanium frame. This will make it possible to create a polymeric environment which is suitable for cells without the need to meet mechanical requirements with the polymeric structure

    The dopamine D2 receptor mediates approach-avoidance tendencies in smokers

    Get PDF
    Dopamine D2 receptors (DRD2) have been strongly implicated in reward processing of natural stimuli and drugs. By using the Approach-Avoidance Task (AAT), we recently demonstrated that smokers show an increased approach bias toward smoking-related cues but not toward naturally-rewarding stimuli. Here we examined the contribution of the DRD2 Taq1B polymorphism to smokers’ and non-smokers’ responsivity toward smoking versus naturally-rewarding stimuli in the AAT. Smokers carrying the minor B1 allele of the DRD2 Taq1B polymorphism showed reduced approach behavior for food-related pictures compared to non-smokers with the same allele. In the group of smokers, a higher approach-bias toward smoking-related compared to food-related pictures was found in carriers of the B1 allele. This pattern was not evident in smokers homozygous for the B2 allele. Additionally, smokers with the B1 allele reported fewer attempts to quit smoking relative to smokers homozygous for the B2 allele. This is the first study demonstrating that behavioral shifts in response to smoking relative to natural rewards in smokers are mediated by the DRD2 Taq1B polymorphism. Our results indicate a reduced natural-reward brain reactivity in smokers with a genetically determined decrease in dopaminergic activity (i.e., reduction of DRD2 availability). It remains to be determined whether this pattern might be related to a different outcome after psychological cessation interventions, i.e. AAT modification paradigms, in smokers
    corecore