282 research outputs found

    Impact of changing US cigarette smoking patterns on incident cancer: Risks of 20 smoking-related cancers among the women and men of the NIH-AARP cohort

    Get PDF
    Background: Historically, US women started smoking at a later age than men and had lower relative risks for smoking-related cancers. However, more recent birth cohorts of women and men have similar smoking histories and have now reached the high-risk age for cancer. The impact of these changes on cancer incidence has not been systematically examined. Methods: Relative risks (RR), 95% confidence intervals (CI) and attributable fractions were calculated for cigarette smoking and incidence of 20 smoking-related cancers in 186 057 women and 266 074 men of the National Institutes of Health-AARP cohort, aged 50 to 71 years in 1995 and followed for 11 years. Results: In the cohort, which included participants born between 1924 and 1945, most women and men started smoking as teenagers. RRs for current vs never smoking were similar in women and men for the following cancers: lung squamous-cell (RR women: 121.4, 95% CI: 57.3–257.4; RR men:114.6, 95% CI: 61.2–214.4), lung adenocarcinoma (RR women: 11.7, 95% CI: 9.8–14.0; RR men: 15.6, 95% CI: 12.5–19.6), laryngeal (RR women: 37.0, 95% CI: 14.9–92.3; RR men: 13.8, 95% CI: 9.3–20.2), oral cavity-pharyngeal (RR women:4.4, 95% CI: 3.3–6.0; RR men: 3.8, 95% CI: 3.0–4.7), oesophageal squamous cell (RR women: 7.3, 95% CI: 3.5–15.5; RR men: 6.2, 95% CI: 2.8–13.7), bladder (RR women: 4.7, 95% CI: 3.7–5.8; RR men: 4.0, 95% CI: 3.5–4.5), colon (RR women: 1.3, 95% CI: 1.2–1.5; RR men: 1.3, 95% CI: 1.1–1.4), and at other sites, with similar attributable fractions. Conclusions: RRs for current smoking and incidence of many smoking-related cancers are now similar in US women and men, likely reflecting converging smoking patterns

    The Diesel Exhaust in Miners Study: II. Exposure Monitoring Surveys and Development of Exposure Groups

    Get PDF
    Air monitoring surveys were conducted between 1998 and 2001 at seven non-metal mining facilities to assess exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), for an epidemiologic study of miners exposed to DE. Personal exposure measurements were taken on workers in a cross-section of jobs located underground and on the surface. Air samples taken to measure REC were also analyzed for respirable organic carbon (ROC). Concurrent measurements to assess exposure to nitric oxide (NO) and nitrogen dioxide (NO2), two gaseous components of DE, were also taken. The REC measurements were used to develop quantitative estimates of average exposure levels by facility, department, and job title for the epidemiologic analysis. Each underground job was assigned to one of three sets of exposure groups from specific to general: (i) standardized job titles, (ii) groups of standardized job titles combined based on the percentage of time in the major underground areas, and (iii) larger groups based on similar area carbon monoxide (CO) air concentrations. Surface jobs were categorized based on their use of diesel equipment and proximity to DE. A total of 779 full-shift personal measurements were taken underground. The average REC exposure levels for underground jobs with five or more measurements ranged from 31 to 58 μg m−3 at the facility with the lowest average exposure levels and from 313 to 488 μg m−3 at the facility with the highest average exposure levels. The average REC exposure levels for surface workers ranged from 2 to 6 μg m−3 across the seven facilities. There was much less contrast in the ROC compared with REC exposure levels measured between surface and underground workers within each facility, as well as across the facilities. The average ROC levels underground ranged from 64 to 195 μg m−3, while on the surface, the average ROC levels ranged from 38 to 71 μg m−3 by facility, an ∼2- to 3-fold difference. The average NO and NO2 levels underground ranged from 0.20 to 1.49 parts per million (ppm) and from 0.10 to 0.60 ppm, respectively, and were ∼10 times higher than levels on the surface, which ranged from 0.02 to 0.11 ppm and from 0.01 to 0.06 ppm, respectively. The ROC, NO, and NO2 concentrations underground were correlated with the REC levels (r = 0.62, 0.71, and 0.62, respectively). A total of 80% of the underground jobs were assigned an exposure estimate based on measurements taken for the specific job title or for other jobs with a similar percentage of time spent in the major underground work areas. The average REC exposure levels by facility were from 15 to 64 times higher underground than on the surface. The large contrast in exposure levels measured underground versus on the surface, along with the differences between the mining facilities and between underground jobs within the facilities resulted in a wide distribution in the exposure estimates for evaluation of exposure–response relationships in the epidemiologic analyses

    Висновок експерта в криміналістичних технологіях

    Get PDF
    Досліджується висновок експерта в аспекті технологій експертних та технологій слідчих. Встановлюються умови технологічності цього процесуального документу. Конкретизуються критерії та дії експерта з забезпечення процесуальних вимог при складанні висновку за результатами проведених досліджень, та операції з оцінки висновку експерта слідчим.Исследуется заключение эксперта в аспекте технологий экспертных и технологий следственных. Устанавливаются условия технологичности этого процессуального документа. Конкретизируются критерии и действия эксперта по обеспечению процессуальных требований при составлении заключения по результатам проведенных исследований, и операции по оценке заключения эксперта следователем.The expert's conclusion is investigated in the aspect of expertise technologies and investigation technologies . The conditions for manufacturability of this procedural document are established. The criteria and expert's actions providing the procedural requirements while preparation of the report on the research results, and the operation on the assessment of the expert conclusion by investigator are concretized

    The Diesel Exhaust in Miners Study: V. Evaluation of the Exposure Assessment Methods

    Get PDF
    Exposure to respirable elemental carbon (REC), a component of diesel exhaust (DE), was assessed for an epidemiologic study investigating the association between DE and mortality, particularly from lung cancer, among miners at eight mining facilities from the date of dieselization (1947–1967) through 1997. To provide insight into the quality of the estimates for use in the epidemiologic analyses, several approaches were taken to evaluate the exposure assessment process and the quality of the estimates. An analysis of variance was conducted to evaluate the variability of 1998–2001 REC measurements within and between exposure groups of underground jobs. Estimates for the surface exposure groups were evaluated to determine if the arithmetic means (AMs) of the REC measurements increased with increased proximity to, or use of, diesel-powered equipment, which was the basis on which the surface groups were formed. Estimates of carbon monoxide (CO) (another component of DE) air concentrations in 1976–1977, derived from models developed to predict estimated historical exposures, were compared to 1976–1977 CO measurement data that had not been used in the model development. Alternative sets of estimates were developed to investigate the robustness of various model assumptions. These estimates were based on prediction models using: (i) REC medians rather AMs, (ii) a different CO:REC proportionality than a 1:1 relation, and (iii) 5-year averages of historical CO measurements rather than modeled historical CO measurements and DE-related determinants. The analysis of variance found that in three of the facilities, most of the between-group variability in the underground measurements was explained by the use of job titles. There was relatively little between-group variability in the other facilities. The estimated REC AMs for the surface exposure groups rose overall from 1 to 5 μg m−3 as proximity to, and use of, diesel equipment increased. The alternative estimates overall were highly correlated (∼0.9) with the primary set of estimates. The median of the relative differences between the 1976–1977 CO measurement means and the 1976–1977 estimates for six facilities was 29%. Comparison of estimated CO air concentrations from the facility-specific prediction models with historical CO measurement data found an overall agreement similar to that observed in other epidemiologic studies. Other evaluations of components of the exposure assessment process found moderate to excellent agreement. Thus, the overall evidence suggests that the estimates were likely accurate representations of historical personal exposure levels to DE and are useful for epidemiologic analyses

    The Diesel Exhaust in Miners Study: IV. Estimating Historical Exposures to Diesel Exhaust in Underground Non-metal Mining Facilities

    Get PDF
    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998–2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m3 min−1), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP1990+) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947–1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP1990+). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC estimates) generated from these models indicated that CO concentrations had been generally greater in the past than during the 1998–2001 DEMS surveys, with the highest levels ranging from 100 to 685% greater (median: 300%). These levels generally occurred between 1970 and the early 1980s. A comparison of the CO facility-specific model predictions with CO air concentration measurements from a 1976–1977 survey external to the modeling showed that our model predictions were slightly lower than those observed (median relative difference of 29%; range across facilities: 49 to –25%). In summary, we successfully modeled past CO concentration levels using selected determinants of DE exposure to derive retrospective estimates of REC exposure. The results suggested large variations in REC exposure levels both between and within the underground operations of the facilities and over time. These REC exposure estimates were in a plausible range and were used in the investigation of exposure–response relationships in epidemiologic analyses

    Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts

    Get PDF
    Background: Diesel engine exhaust (DEE) has recently been classified as a known human carcinogen. Objective: We derived a meta-exposure–response curve (ERC) for DEE and lung cancer mortality and estimated lifetime excess risks (ELRs) of lung cancer mortality based on assumed occupational and environmental exposure scenarios. Methods: We conducted a meta-regression of lung cancer mortality and cumulative exposure to elemental carbon (EC), a proxy measure of DEE, based on relative risk (RR) estimates reported by three large occupational cohort studies (including two studies of workers in the trucking industry and one study of miners). Based on the derived risk function, we calculated ELRs for several lifetime occupational and environmental exposure scenarios and also calculated the fractions of annual lung cancer deaths attributable to DEE. Results: We estimated a lnRR of 0.00098 (95% CI: 0.00055, 0.0014) for lung cancer mortality with each 1-μg/m3-year increase in cumulative EC based on a linear meta-regression model. Corresponding lnRRs for the individual studies ranged from 0.00061 to 0.0012. Estimated numbers of excess lung cancer deaths through 80 years of age for lifetime occupational exposures of 1, 10, and 25 μg/m3 EC were 17, 200, and 689 per 10,000, respectively. For lifetime environmental exposure to 0.8 μg/m3 EC, we estimated 21 excess lung cancer deaths per 10,000. Based on broad assumptions regarding past occupational and environmental exposures, we estimated that approximately 6% of annual lung cancer deaths may be due to DEE exposure. Conclusions: Combined data from three U.S. occupational cohort studies suggest that DEE at levels common in the workplace and in outdoor air appear to pose substantial excess lifetime risks of lung cancer, above the usually acceptable limits in the United States and Europe, which are generally set at 1/1,000 and 1/100,000 based on lifetime exposure for the occupational and general population, respectively. Citation: Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. 2014. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122:172–177; http://dx.doi.org/10.1289/ehp.130688

    Retro American

    Get PDF
    Diesel exhaust is a suggested risk factor for ischemic heart disease (IHD), but evidence from cohorts using quantitative exposure metrics is limited. We examined the impact of respirable elemental carbon (REC), a key surrogate for diesel exhaust, and respirable dust (RD) on IHD mortality, using data from the Diesel Exhaust in Miners Study in the United States. Using data from a cohort of male workers followed from 1948–1968 until 1997, we fitted Cox proportional hazards models to estimate hazard ratios for IHD mortality for cumulative and average intensity of exposure to REC and RD. Segmented linear regression models allowed for nonmonotonicity. Hazard ratios for cumulative and average REC exposure declined relative to the lowest exposure category before increasing to 0.79 and 1.25, respectively, in the highest category. Relative to the category containing the segmented regression change points, hazard ratios for the highest category were 1.69 and 1.54 for cumulative and average REC exposure, respectively. Hazard ratios for RD exposure increased across the full exposure range to 1.33 and 2.69 for cumulative and average RD exposure, respectively. Tests for trend were statistically significant for cumulative REC exposure (above the change point) and for average RD exposure. Our findings suggest excess risk of IHD mortality in relation to increased exposure to REC and RD. © 2018 Oxford University Press. All Rights Reserved

    Genetic and Non-genetic Predictors of LINE-1 Methylation in Leukocyte DNA

    Get PDF
    Background: Altered DNA methylation has been associated with various diseases. Objective: We evaluated the association between levels of methylation in leukocyte DNA at long interspersed nuclear element 1 (LINE-1) and genetic and non-genetic characteristics of 892 control participants from the Spanish Bladder Cancer/EPICURO study. Methods: We determined LINE-1 methylation levels by pyrosequencing. Individual data included demographics, smoking status, nutrient intake, toenail concentrations of 12 trace elements, xenobiotic metabolism gene variants, and 515 polymorphisms among 24 genes in the one-carbon metabolism pathway. To assess the association between LINE-1 methylation levels (percentage of methylated cytosines) and potential determinants, we estimated beta coefficients (βs) by robust linear regression. Results: Women had lower levels of LINE-1 methylation than men (β = –0.7, p = 0.02). Persons who smoked blond tobacco showed lower methylation than nonsmokers (β = –0.7, p = 0.03). Arsenic toenail concentration was inversely associated with LINE-1 methylation (β = –3.6, p = 0.003). By contrast, iron (β = 0.002, p = 0.009) and nickel (β = 0.02, p = 0.004) were positively associated with LINE-1 methylation. Single nucleotide polymorphisms (SNPs) in DNMT3A (rs7581217-per allele, β = 0.3, p = 0.002), TCN2 (rs9606756-GG, β = 1.9, p = 0.008; rs4820887-AA, β = 4.0, p = 4.8 × 10–7; rs9621049-TT, β = 4.2, p = 4.7 × 10–9), AS3MT (rs7085104-GG, β = 0.7, p = 0.001), SLC19A1 (rs914238, TC vs. TT: β = 0.5 and CC vs. TT: β = –0.3, global p = 0.0007) and MTHFS (rs1380642, CT vs. CC: β = 0.3 and TT vs. CC; β = –0.8, global p = 0.05) were associated with LINE-1 methylation. Conclusions: We identified several characteristics, environmental factors, and common genetic variants that predicted DNA methylation among study participants

    Diesel Exhaust Exposure and Cause-Specific Mortality in the Diesel Exhaust in Miners Study II (DEMS II) Cohort

    Get PDF
    BACKGROUND: With the exception of lung cancer, the health effects associated with diesel exhaust for other cancers and nonmalignant health outcomes are not well understood. OBJECTIVES: We extended the mortality follow-up of the Diesel Exhaust in Miners Study, a cohort study of 12,315 workers, by 18 y (ending 31 December 2015), more than doubling the number of observed deaths to n = 4,887, to evaluate associations between mortality and diesel exhaust exposure. METHODS: Quantitative estimates of historical exposure to respirable elemental carbon (REC), a surrogate for diesel exhaust, were created for all jobs, by year and facility, using measurements collected from each mine, as well as historical measurements. Standardized mortality ratios (SMRs) and hazard ratios (HRs) were estimated for the entire cohort and by worker location (surface, underground). RESULTS: We observed an excess of death for cancers of the lung, trachea, and bronchus (n = 409; SMR = 1:24; 95% CI: 1.13, 1.37). Among workers who ever worked underground, where the majority of diesel exposure occurred, excess deaths were evident for lung, trachea, and bronchus cancers (n = 266; SMR = 1:26; 95% CI: 1.11, 1.42). Several nonmalignant diseases were associated with excess mortality among workers ever-employed underground, including ischemic heart disease (SMR = 1:08; 95% CI: 1.00, 1.16), cerebrovascular disease (SMR = 1:22; 95% CI: 1.04, 1.43), and nonmalignant diseases of the respiratory system (SMR = 1:13; 95% CI: 1.01, 1.26). Continuous 15-y lagged cumulative REC exposure <1,280 lg/m3-y was associated with increased lung cancer risk (HR = 1:93; 95% CI: 1.24, 3.03), but the risk declined at the highest exposures (HR = 1:29; 95% CI: 0.74, 2.26). We also observed a significant trend in non-Hodgkin lymphoma (NHL) risk with increasing 20-y lagged cumulative REC (HRTertile3 vs: Tertile1 = 3:12; 95% CI: 1.00, 9.79; p-trend = 0:031). DISCUSSION: Increased risks of lung cancer mortality observed in the original study were sustained. Observed associations between diesel exposure and risk of death from NHL and the excesses in deaths for diseases of the respiratory and cardiovascular system, including ischemic heart disease and cerebrovascular disease, warrant further study and provide evidence of the potential widespread public health impact of diesel exposure

    Winner\u27s Curse Correction and Variable Thresholding Improve Performance of Polygenic Risk Modeling Based on Genome-Wide Association Study Summary-Level Data

    Get PDF
    Recent heritability analyses have indicated that genome-wide association studies (GWAS) have the potential to improve genetic risk prediction for complex diseases based on polygenic risk score (PRS), a simple modelling technique that can be implemented using summary-level data from the discovery samples. We herein propose modifications to improve the performance of PRS. We introduce threshold-dependent winner’s-curse adjustments for marginal association coefficients that are used to weight the single-nucleotide polymorphisms (SNPs) in PRS. Further, as a way to incorporate external functional/annotation knowledge that could identify subsets of SNPs highly enriched for associations, we propose variable thresholds for SNPs selection. We applied our methods to GWAS summary-level data of 14 complex diseases. Across all diseases, a simple winner’s curse correction uniformly led to enhancement of performance of the models, whereas incorporation of functional SNPs was beneficial only for selected diseases. Compared to the standard PRS algorithm, the proposed methods in combination led to notable gain in efficiency (25–50% increase in the prediction R2) for 5 of 14 diseases. As an example, for GWAS of type 2 diabetes, winner’s curse correction improved prediction R2 from 2.29% based on the standard PRS to 3.10% (P = 0.0017) and incorporating functional annotation data further improved R2 to 3.53% (P = 2×10−5). Our simulation studies illustrate why differential treatment of certain categories of functional SNPs, even when shown to be highly enriched for GWAS-heritability, does not lead to proportionate improvement in genetic risk-prediction because of non-uniform linkage disequilibrium structure
    corecore