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DNA methylation plays a fundamental role 
in regulation of gene expression, genomic 
imprinting, X-chromosome inactivation, and 
repression of transposable elements (Jones 
and Liang 2009). Aberrant DNA methylation 
has been associated with various cancers and 
with developmental, autoimmune, and other 
chronic diseases (Robertson 2005). Global 
DNA methylation can be directly quantified 
by measuring 5-methylcytosine content of 
the genome, or it can be estimated based on 
methylation of repetitive sequences such as 
Alu elements or long interspersed nuclear ele-
ment 1 (LINE-1) (Yang et al. 2004). Age, sex, 
smoking, and arsenic and lead exposures have 
been associated with DNA methylation, but 
findings have been inconsistent among studies 
(Breitling et al. 2011; El-Maarri et al. 2007; 
Fraga et al. 2005; Fuke et al. 2004; Terry et al. 
2011). The folate and methionine-dependent 

one-carbon metabolism pathway could modu-
late DNA methylation by altering the level 
of S-adenosylmethionine (SAM), the prin-
cipal source of methyl groups (Ulrey et al. 
2005). Genetic variants might also influ-
ence the methylation of CpG loci locally, or 
might have a global influence on methyla
tion throughout the genome. For example, 
a single nucleotide polymorphism (SNP) in 
TRPC3 (transient receptor potential cation 
channel, subfamily C, member 3)-isoform 2 
has been reported to regulate the methylation 
status of its own promoter (Martin-Trujillo 
et al. 2011), and variants of the methylene
tetrahydrofolate reductase gene (MTHFR) 
have been associated with global DNA 
hypomethylation (Castro et al. 2004; Friso 
et al. 2002). However, although the determi-
nants of global and site-specific methylation 
are widely assumed to be likely contributors 

to health and disease, they are poorly defined 
at this time.

Assessing the impact of both genetic and 
non-genetic factors on global DNA methyla
tion may improve our understanding of the 
molecular pathogenesis of many common 
diseases. Therefore, we investigated associations 
of global DNA methylation in LINE-1 from 
bisulfite-modified granulocyte DNA with 
genetic variants and personal, demographic, 
lifestyle, and environmental characteristics.

Methods
Study population. The study population, 
design, and data collection have been previ-
ously described (García-Closas M et al. 2005). 
Briefly, participating individuals were controls 
from the Spanish Bladder Cancer/EPICURO 
study who were admitted to hospitals in five 
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Background: Altered DNA methylation has been associated with various diseases.

Objective: We evaluated the association between levels of methylation in leukocyte DNA at long 
interspersed nuclear element 1 (LINE-1) and genetic and non-genetic characteristics of 892 control 
participants from the Spanish Bladder Cancer/EPICURO study.

Methods: We determined LINE-1 methylation levels by pyrosequencing. Individual data included 
demographics, smoking status, nutrient intake, toenail concentrations of 12 trace elements, 
xenobiotic metabolism gene variants, and 515 polymorphisms among 24 genes in the one-carbon 
metabolism pathway. To assess the association between LINE-1 methylation levels (percentage of 
methylated cytosines) and potential determinants, we estimated beta coefficients (βs) by robust 
linear regression.

Results: Women had lower levels of LINE-1 methylation than men (β = –0.7, p = 0.02). Persons 
who smoked blond tobacco showed lower methylation than nonsmokers (β = –0.7, p = 0.03). Arsenic 
toenail concentration was inversely associated with LINE-1 methylation (β = –3.6, p = 0.003). By 
contrast, iron (β = 0.002, p = 0.009) and nickel (β = 0.02, p = 0.004) were positively associated 
with LINE-1 methylation. Single nucleotide polymorphisms (SNPs) in DNMT3A (rs7581217-
per allele, β = 0.3, p = 0.002), TCN2 (rs9606756-GG, β = 1.9, p = 0.008; rs4820887-AA, β = 4.0, 
p = 4.8 × 10–7; rs9621049-TT, β = 4.2, p = 4.7 × 10–9), AS3MT (rs7085104-GG, β = 0.7, p = 0.001), 
SLC19A1 (rs914238, TC vs. TT: β = 0.5 and CC vs. TT: β = –0.3, global p = 0.0007) and MTHFS 
(rs1380642, CT vs. CC: β = 0.3 and TT vs. CC; β = –0.8, global p = 0.05) were associated with 
LINE-1 methylation.

Conclusions: We identified several characteristics, environmental factors, and common genetic 
variants that predicted DNA methylation among study participants.

Key words: DNA methylation, epigenetics, LINE-1, one-carbon metabolism gene variants, 
smoking, trace elements. Environ Health Perspect 121:650–656 (2013).  http://dx.doi.org/10.1289/
ehp.1206068 [Online 3 April 2013]
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regions of Spain for a range of conditions 
including hernia, fractures, and other non
cancer diseases, and were 20–81 years of age. 
We collected demographic and exposure infor-
mation at the hospitals using computer-assisted 
personal interviews. Of a total of 1,271 controls 
who agreed to participate in the study and were 
interviewed, 1,056 provided blood for DNA 
extraction. We excluded 23 subjects because 
of inadequate or poor quality DNA (n = 15) 
or missing smoking status data (n = 8). Three 
subjects with missing data on smoking status 
were included because they had data on other 
variables including age, sex, region, and body 
mass index (BMI). To ensure homogeneity, we 
also excluded one non-Caucasian individual, 
leaving 925 individuals with granulocyte DNA 
for bisulfite modification and pyrosequencing. 
Pyrosequencing failed in 33 individuals; thus, 
the final study population for the present anal-
ysis included 892 participants. We obtained 
written informed consent from all partici-
pants, and the study was approved by the local 
Spanish institutional review boards and U.S. 
National Cancer Institute.

Quantification of LINE-1 methylation. 
We extracted granulocyte DNA using stan-
dard methods (García-Closas M et al. 2005). 
We carried out bisulfite conversion of DNA 
using the EZ-96 DNA Methylation-Gold™ kit 
(Zymo Research, Irvine, CA, USA) according 
to the manufacturer’s recommendations. We 
carried out polymerase chain reaction (PCR) 
amplification of bisulfite-modified DNA using 
a set of forward and reverse primers reported 
previously (Estécio et al. 2007). To quantify 
the methylation level of each of the first four 
CpG sites next to the pyrosequencing primer, 
we performed sequencing of the PCR product 
by pyrosequencing, using the PyroMark™ Q24 
System (QIAGEN, Valencia, CA, USA) as rec-
ommended by the manufacturer. The first four 
were the CpGs from which we could obtain 
methylation values of all samples. We extracted 
the methylation level at each CpG site using 
the PyroMark™ application software, version 
2.0.6 (QIAGEN), and we expressed the value 
as the percentage of methylated cytosines over 
the sum of methylated and unmethylated cyto-
sines. We used the average methylation level 
of the first four LINE-1 CpG sites as a sur-
rogate marker of the global DNA methyla
tion level. To determine whether changes in 
blood cell populations affect LINE-1 methyla
tion levels, we analyzed LINE-1 methylation 
in independently purified granulocyte and 
lymphocyte samples. The results showed no 
significant difference in LINE-1 methylation 
between granulocyte and lymphocyte samples, 
thus suggesting that variation in the distri-
bution of peripheral blood cell populations 
among participants would not contribute to 
variation in global DNA methylation (data 
not shown). For the present study, we used 

DNA extracted from granulocytes to quantify 
DNA methylation. As a quality control mea-
sure, we measured LINE-1 methylation in 129 
randomly selected duplicate samples and the 
within-sample coefficient of variation (CV) 
was 4.0%. In the analysis, we used the average 
of the duplicates for those samples.

Nutritional assessment. We estimated 
the usual intake of vitamins B1, B2, B3, B6, 
and B12, folate, protein, alcohol, fruit, and 
vegetables over the 5 years before interview 
using a validated food frequency questionnaire 
of 127 items (García-Closas R et al. 2007). 
Micronutrients and macronutrients included 
in the present analysis have been suggested 
as important cofactors and methyl donors in 
one-carbon metabolism (Stover 2009). We 
calculated nutrient density variables by divid-
ing the total estimated mass of daily food 
consumed by the total estimated daily energy 
intake (micrograms per day per kilocalorie).

Trace elements. We collected toenail clip-
pings to estimate chronic exposure to trace 
elements. Sample collection and experimental 
methods used to measure trace elements level 
have been reported previously (Amaral et al. 
2012). Briefly, after cleaning and washing the 
toenails to remove external contaminants, 
we quantified elements at the Trace Element 
Analysis Core (Dartmouth College, Hanover, 
NH, USA), using inductively coupled plasma–
mass spectrometry (Hopkins et al. 2004). We 
digested the samples with Optima® Nitric 
Acid (Fisher Scientific, St. Louis, MO, USA) 
at 105°C followed by addition of hydrogen 
peroxide and further heating the dilution with 
deionized water. We recorded gravimetrically 
all sample preparation steps. As a quality con-
trol, each batch of analyses included six stan-
dard reference material samples with known 
trace element content (GBW 07601, pow-
dered human hair; China National Analysis 
Center for Iron and Steel, Beijing, China) 
and six analytic blanks, along with the study 
samples. In total, we determined concen-
trations (micrograms per gram) of 12 trace 
elements (aluminum, arsenic, cadmium, chro-
mium, copper, iron, lead, manganese, nickel, 
selenium, vanadium, and zinc).

Genotyping. For genotype assays, we 
extracted DNA from leukocytes as described 
previously (García-Closas M et  al. 2005). 
We determined genotypes at the Core 
Genotyping Facility of the Division of 
Cancer Epidemiology and Genetics, National 
Cancer Institute, MD, USA. We selected for 
the analysis a total of 515 SNPs in 24 genes 
involved in the one-carbon metabolism path-
way, including DNA methylation and arsenic 
metabolism [for a list of the 24 genes evalu-
ated, see Supplemental Material, Table S1 
(http://dx.doi.org/10.1289/ehp.1206068)]. 
We selected these genes because they are criti-
cal for the one-carbon metabolism pathway 

(Lee  YL et  al. 2009; Ulrey et  al. 2005). 
Previously, we described in detail methods 
of the genotyping process (García-Closas M 
et al. 2005, 2007; Rothman et al. 2010). We 
genotyped SNPs using Illumina Infinium® 
Human1M-Duo, Illumina GoldenGate® 
(Illumina, San Diego, CA, USA) and 
TaqMan® (Applied Biosystems, Foster City, 
CA, USA) assays (for a complete list of SNPs 
according to assay, see Supplemental Material, 
Table S2). In addition, we estimated asso-
ciations between LINE-1 methylation and 
glutathione S-transferase mu 1 (GSTM1), glu-
tathione S-transferase theta 1 (GSTT1), and 
N-acetyltransferase 2 (NAT2) variants because 
of their relevance to bladder cancer (Cash 
et al. 2012). These variants were determined 
as described by García-Closas M et al. (2005). 
All genotypes included in the study were in 
Hardy-Weinberg equilibrium in the study 
population (p > 0.05) (data not shown).

Statistical analysis. The distribution of 
LINE-1 methylation levels was slightly bimodal 
and positively skewed [see Supplemental 
Material, Figure S1 (http://dx.doi.org/10.1289/
ehp.1206068)]. To estimate associations 
between LINE-1 methylation levels and each 
of the variables considered, we fitted bivariate 
robust linear regression models and calculated 
the corresponding beta coefficients and 95% 
confidence intervals (CIs). Characteristics ana-
lyzed as continuous variables were age, micro-
nutrient intakes, fruit and vegetable intakes, 
and toenail concentrations of trace elements. 
Characteristics analyzed as categorical variables 
were BMI (< 25.0, 25.0–26.99, 27.0–29.99, 
≥ 30.0), smoking status (non-, occasional, for-
mer, current smoker), and tobacco type (non-
smoker, blond only, black only, blond and 
black, unknown).

To identify SNPs for detailed assess-
ment, we first used the Fisher’s exact test 
to screen SNPs that were significantly asso-
ciated (p < 0.05) with LINE-1 methylation 
categorized according to tertiles (< 56.7%, 
56.7–58.6%, and >  58.6%) according 
to codominant mode of inheritance. The 
22 SNPs identified for further analyses [listed 
in Supplemental Material, Table S3 (http://
dx.doi.org/10.1289/ehp.1206068)] were sub-
sequently modeled according to all modes of 
inheritance (additive, codominant, dominant, 
and recessive). The mode of inheritance that 
best predicted LINE-1 methylation is reported.

In addition to age and sex, adjusted robust 
linear regression models for each potential pre-
dictor included region, which may be related 
to diet, micronutrients (Gabriel et al. 2006), 
and environmental pollution and smoking 
status, which may be related to trace elements 
(Moerman and Potts 2011). We also did a 
sensitivity analysis without adjusting for smok-
ing status to see whether there was a change 
in the beta estimates. We included all the 
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515 SNPs in the analysis regardless of link-
age disequilibrium. The association between 
LINE-1 methylation and potential predic-
tors was assessed in the multivariable adjusted 
model stratifying by sex. Because arsenic and 
rs7085104 in arsenic (+3 oxidation state) 
methyltransferase (AS3MT), which is involved 
in arsenic metabolism, were individually asso-
ciated with LINE-1 methylation, we assessed 
the presence of effect modification by includ-
ing a multiplicative interaction term in a 
model adjusted for age, sex, region, and smok-
ing status. The Wald test was used to calculate 
the interaction p-value. We corrected for mul-
tiple testing using the Bonferroni method. We 
conducted a sensitivity analysis, excluding 42 
individual participants who had a CV > 4% 

for LINE-1 methylation in duplicate samples. 
This exclusion did not result in substantial 
differences in the beta coefficients; therefore, 
those participants remained in the analyses 
(data not shown). All statistical tests were two-
sided, and p ≤ 0.05 was considered significant. 
We carried out all data analyses using Stata/
SE version 10.1 (StataCorp, College Station, 
TX, USA).

Results
The characteristics of the 892 partici-
pants in the present study and median and 
mean LINE-1 methylation levels according 
to each variable of interest are provided in 
Supplemental Material, Table  S4 (http://
dx.doi.org/10.1289/ehp.1206068). The 

majority of the study participants were 
male (89%) and regular (former or cur-
rent) smokers (63.9%), with a median age 
of 66 years [interquartile range (IQR) = 13]. 
The mean LINE-1 methylation level was 
58.9% (SD  =  5.3%) with minimum and 
maximum value of 37.9% and 85.7%, respec-
tively. Table 1 shows the association between 
LINE-1 methylation levels and characteristics 
of study subjects. In the bivariable robust lin-
ear regression analysis, only toenail arsenic and 
nickel concentrations were significantly associ-
ated with LINE-1 methylation. However, in 
multivariable robust linear regression mod-
els adjusted for age, sex, region, and smok-
ing status, the levels of LINE-1 methylation 
were significantly lower in women than in 

Table 1. Association between LINE-1 methylation level and individual characteristics of study subjects in the SBC/EPICURO study.

Variables n
LINE-1 methylation 

mean (95% CI)

Unadjusted Adjusted

β (95% CI) p-Value n β (95% CI)a,b p-Value
Age (years) 892 — –0.004 (–0.02, 0.01) 0.6 889 –0.006 (–0.02, 0.01) 0.5
Sex  

Men 792 59.0 (58.6, 59.4) Ref 789 Ref  
Women 100 58.0 (57.1, 58.8) –0.4 (–0.9, 0.05) 0.08 100 –0.7 (–1.2, –0.1) 0.02

Region  
Barcelona 168 59.3 (58.5, 60.2) Ref 168 Ref  
Vallès 135 58.3 (57.5, 59.0) –0.2 (–0.7, 0.4) 0.5 135 –0.2 (–0.7, 0.3) 0.5
Elche 73 58.2 (57.1, 59.3) –0.4 (–1.1, 0.2) 0.2 73 –0.5 (–1.1, 0.2) 0.1
Tenerife 145 58.6 (57.8, 59.4) –0.1 (–0.7, 0.4) 0.7 144 –0.1 (–0.6, 0.4) 0.7
Asturias 371 59.2 (58.6, 59.8) 0.2 (–0.3, 0.6) 0.5 369 0.1 (–0.3, 0.6) 0.6

BMI (kg/m²)  
< 25.0 372 58.8 (58.3, 59.3) Ref 370 Ref  
25.0–26.99 148 58.9 (57.9, 59.9) –0.2 (–0.6, 0.3) 0.5 148 –0.2 (–0.6, 0.3) 0.4
27.0–29.99 120 59.0 (58.1, 59.8) 0.1 (–0.3, 0.6) 0.6 120 0.2 (–0.3, 0.7) 0.4
≥ 30.0 57 58.8 (57.5, 60.2) –0.08 (–0.7, 0.6) 0.8 57 –0.03 (–0.7, 0.6) 0.9
Missing data 195

Smoking status  
Nonsmoker 255 58.2 (57.7, 58.7) Ref 255 Ref  
Occasional smoker 66 60.0 (58.4, 61.5) 0.4 (–0.2, 1.1) 0.2 66 0.3 (–0.3, 1.0) 0.3
Former smoker 329 58.9 (58.3, 59.5) –0.2 (–0.5, 0.3) 0.6 329 –0.3 (–0.7, 0.1) 0.2
Current smoker 239 59.4 (58.6, 60.2) –0.2 (–0.6, 0.2) 0.4 239 –0.4 (–0.9, 0.07) 0.1
Missing data 3

Tobacco type  
Nonsmoker 255 58.2 (57.7, 58.7) Ref 255 Ref  
Blond only 99 58.5 (57.6, 59.5) –0.5 (–1.0, 0.09) 0.1 99 –0.7 (–1.3, –0.08) 0.03
Black only 219 59.6 (58.8, 60.4) 0.06 (–0.4, 0.5) 0.8 218 –0.2 (–0.6, 0.3) 0.5
Blond and black 154 58.7 (57.8, 59.6) –0.3 (–0.8, 0.2) 0.2 154 –0.6 (–1.1, –0.07) 0.03
Unknown 97 59.3 (58.2, 60.5) –0.01 (–0.6, 0.6) 0.9 97 –0.12 (–0.7, 0.5) 0.7
Missing data 68

Controls’ diagnosis  
Hernia 332 58.8 (58.2, 59.4) Ref 330 Ref  
Fracture and trauma 263 59.3 (58.6, 60.0) –0.2 (–0.5, 0.2) 0.4 262 –0.02 (–0.4, 0.4) 0.9
Hydrocele 122 58.7 (57.8, 59.6) 0.2 (–0.3, 0.7) 0.4 122 0.2 (–0.3, 0.7) 0.5
Other abdominal surgery 99 58.3 (57.4, 59.2) –0.2 (–0.7, 0.3) 0.4 99 –0.09 (–0.6, 0.5) 0.7
Other diseases 76 59.2 (57.9, 60.5) 0.01 (–0.9, 0.6) 0.9 76 0.2 (–0.4, 0.8) 0.5

Dietary intakec  
Vitamin B1 (µg/day/kcal) 645 — 0.5 (–0.6, 1.6) 0.3 644 0.6 (–0.6, 1.7) 0.3
Vitamin B2 (µg/day/kcal) 645 — 0.1 (–0.5, 0.8) 0.7 644 0.2 (–0.5, 0.8) 0.6
Vitamin B3 (µg/day/kcal) 645 — 0.01 (–0.05, 0.08) 0.7 644 0.02 (–0.05, 0.09) 0.5
Vitamin B6 (µg/day/kcal) 645 — 0.6 (–0.2, 1.4) 0.1 644 0.8 (–0.05, 1.6) 0.07
Vitamin B12 (µg/day/kcal) 645 — –0.04 (–0.09, 0.01) 0.1 644 –0.03 (–0.08, 0.02) 0.3
Folate (µg/day/kcal) 645 — 0.001 (–0.002, 0.004) 0.4 644 0.003 (–0.001, 0.01) 0.1
Protein (µg/day/kcal) 645 — 0.01 (–0.01, 0.03) 0.4 644 0.01 (–0.01, 0.03) 0.4
Alcohol (µg/day/kcal) 645 — –0.002 (–0.02, 0.02) 0.8 644 –0.01 (–0.03, 0.02) 0.5
Fruit (g/day/kcal) 639 — 0.0001 (–0.001, 0.002) 0.9 638 0.0001 (–0.001, 0.002) 0.9
Vegetable (g/day/kcal) 640 — 0.001 (–0.001, 0.003) 0.3 639 0.002 (–0.001, 0.004) 0.1
Fruit and vegetable (g/day/kcal) 639 — 0.0003 (–0.0008, 0.001) 0.6 638 0.0005 (–0.0007, 0.002) 0.4

Table continued
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men (adjusted β = –0.7; 95% CI: –1.2, –0.1, 
p = 0.02) and in smokers of blond tobacco 
only (adjusted β = –0.7; 95% CI: –1.3, –0.08, 
p = 0.03) and of both blond and black tobacco 
(adjusted β = –0.6; 95% CI: –1.1, –0.07, 
p = 0.03) compared with nonsmokers. Toenail 
arsenic concentration also was negatively asso-
ciated with LINE-1 methylation (adjusted 
β for a 1-µg/g increase  =  –3.6; 95%  CI: 
–5.9, –1.2, p = 0.003). In contrast, LINE-1 
levels were positively associated with 1-µg/g 
increases in toenail concentrations of iron 
(adjusted β = 0.002; 95% CI: 0.001, 0.004, 
p = 0.009) and nickel (adjusted β = 0.02; 
95% CI: 0.005, 0.03, p = 0.004). BMI, B 
vitamins, folate, total protein, alcohol, and 
fruit and/or vegetable intake were not sig-
nificantly associated with LINE-1 methyla
tion regardless of adjustment for covariates 
(Table 1). Results from the multivariable anal-
yses without adjusting for smoking status 
done as a sensitivity analysis were not different 
from the associations above (see Supplemental 
Material, Table S5). If we were to correct for 
multiple comparisons by Bonferroni method, 
none of the above would be significant.

Out of the 515 genetic variants assessed, 
22 passed a first screening using Fisher’s 
exact test (p  ≤  0.05 according to codomi-
nant mode of inheritance) [see Supplemental 
Material, Table S3 (http://dx.doi.org/10.1289/
ehp.1206068)]. Of these, 7 SNPs in five genes 
were significantly associated with LINE-1 
methylation based on multivariable models 

adjusted for age, sex, region, and smoking sta-
tus (Table 2; model-based estimates for the 
15 SNPs that were not significantly associ-
ated with LINE-1 methylation are reported in 
Supplemental Material, Table S6.) Significant 
positive associations were estimated for DNA 
(cytosine-5-)-methyltransferase  3 alpha 
(DNMT3A)-rs7581217 (per allele: adjusted 
β = 0.3; 95% CI: 0.1, 0.6, p = 0.002); trans-
cobalamin  II (TCN2)-rs9621049 (reces-
sive: adjusted β  =  4.2; 95%  CI: 2.8,  5.7, 
p  =  4.7  ×  10–9), TCN2-rs4820887 (reces-
sive: adjusted β  =  4.0; 95%  CI: 2.5,  5.6, 
p = 4.8 × 10–7) and TCN2-rs9606756 (reces-
sive: adjusted β  =  1.9; 95%  CI: 0.5,  3.3, 
p = 0.008); and AS3MT-rs7085104 (recessive: 
adjusted β = 0.7; 95% CI: 0.3, 1.2, p = 0.001). 
In addition, significant associations under the 
codominant mode of inheritance (based on 
global p-values) were estimated for solute car-
rier family 19 (folate transporter), member 1 
(SLC19A1)-rs914238 (TC vs. TT, β = 0.5; 
95% CI: 0.08, 0.8; CC vs. TT, β  = –0.3; 
95% CI: –0.7, 0.2; global p = 0.0007) and 
5,10-methenyltetrahydrofolate synthetase 
(MTHFS)-rs1380642 (CT vs. CC, β = 0.3; 
95% CI: –0.08, 0.6; TT vs. CC, β = –0.8; 
95% CI: –1.6, 0.09; global p = 0.05). After 
correcting for multiple testing using the 
Bonferroni method, TCN2-rs9621049 
and TCN2-rs4820887 remained significant 
(p < 0.05).

A significant interaction (p  =  0.01) 
wa s  ob se rved  be tween  a r s en i c  and 

AS3MT-rs7085104 on LINE-1 methylation 
(adjusted β for a 1-μg/g increase in As = –4.1; 
95% CI: –6.6, –1.7, p = 0.001 for genotype 
AA/AG; and adjusted β for a 1-μg/g increase 
in As = 10.2; 95% CI: –3.2, 23.7, p = 0.1 for 
genotype GG).

After simultaneously adjusting for age, 
geographic region, and all factors that were 
significant predictors of LINE-1 methyla
tion (sex; tobacco type; toenail arsenic, iron, 
and nickel; and the 5 SNPs noted above), 
associations with sex, arsenic, nickel, iron, 
DNMT3A-rs7581217, TCN2-rs9621049, 
and MTHFS-rs1380642 remained signifi-
cant. The association with blond tobacco was 
nonsignificant although the direction of the 
point estimate remained unchanged. The 
association between rs9606756, rs4820887, 
and LINE-1 methylation become nonsignif-
cant [see Supplemental Material, Table S7 
(http://dx.doi.org/10.1289/ehp.1206068)]. 
This might be due to reduced sample size in 
the simultaneously adjusted model due to 
missing data.

Discussion
In the present study, we used a compre-
hensive approach to assess associations of 
genetic and non-genetic factors with LINE-1 
methylation in a group of participants 
20–81 years of age. Lower levels of LINE-1 
methylation were found among women 
compared with men, and among smokers of 
blond tobacco compared with nonsmokers. 

Table 1. Continued.

Variables n
LINE-1 methylation 

mean (95% CI)

Unadjusted Adjusted

β (95% CI) p-Value n β (95% CI)a,b p-Value
Toenail trace elements (µg/g)d  

Aluminum 658 — –0.003 (–0.008, 0.002) 0.2 658 –0.003 (–0.008, 0.002) 0.2
Arsenic 659 — –2.9 (–5.2, –0.6) 0.02 659 –3.6 (–5.9, –1.2) 0.003
Cadmium 659 — 0.08 (–0.4, 0.5) 0.7 659 0.1 (–0.3, 0.6) 0.6
Chromium 658 — 0.06 (–0.01, 0.1) 0.09 659 –0.01 (–0.05, 0.03) 0.6
Copper 659 — –0.002 (–0.06, 0.05) 0.95 659 –0.01 (–0.07, 0.04) 0.6
Iron 657 — –0.002 (–0.006, 0.002) 0.4 658 0.002 (0.001, 0.004) 0.009
Lead 659 — –0.05 (–0.1, 0.03) 0.2 659 –0.06 (–0.1, 0.02) 0.2
Manganese 659 — –0.03 (–0.1, 0.09) 0.7 659 –0.05 (–0.2, 0.06) 0.4
Nickel 659 — 0.02 (0.006, 0.03) 0.002 659 0.02 (0.005, 0.03) 0.004
Selenium 659 — 0.1 (–0.8, 1.0) 0.8 659 0.2 (–0.7 1.2) 0.6
Vanadium 651 — –0.7 (–2.7, 1.3) 0.5 651 –0.9 (–2.8, 1.2) 0.4
Zinc 659 — –0.002 (–0.004, 0.001) 0.2 659 –0.001 (–0.004, 0.002) 0.4

NAT2 phenotype  
Rapid/intermediate acetylator 389 59.0 (58.4, 59.6) Ref 388 Ref  
Slow acetylator 498 58.8 (58.4, 59.2) 0.2 (–0.1, 0.5) 0.3 496 0.2 (–0.1, 0.5) 0.2
Missing data 5

GSTM1 genotype  
(+/+, +/–) 421 58.9 (58.3, 59.4) Ref 419 Ref  
(–/–) 462 59.0 (58.5, 59.4) 0.04 (–0.3, 0.4) 0.8 461 0.01 (–0.3, 0.3) 0.9
Missing data 9

GSTT1 genotype  
(+/+, +/–) 688 59.0 (58.6, 59.4) Ref 685 Ref  
(–/–) 198 58.5 (57.9, 59.2) –0.2 (–0.6, 0.2) 0.3 198 –0.2 (–0.6, 0.2) 0.4
Missing data 6

The exposure contrast for trace elements is 1 μg/g and for dietary variables is 1 μg/day/kcal. 
aAdjusted for age, sex, region, and smoking status (non-, occasional, former, current smoker). Tobacco type’s β is not adjusted for smoking status. bThe number of observations are 
reduced by three because of missing data on smoking status. cData available for those who completed food frequency questionnaire. dData available for those who provided toenail 
for trace element assessment.
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In addition, toenail concentrations of arsenic 
were also negatively associated with LINE-1 
methylation. On the other hand, LINE-1 
methylation levels were positively associ-
ated with toenail concentrations of iron and 
nickel, and with seven variants in DNMT3A, 
TCN2, AS3MT, SLC19A1, and MTHFS 
genes.

Our findings support previous results 
showing that women have significantly lower 
levels of LINE-1 methylation (El-Maarri 
et al. 2007, 2011; Wilhelm et al. 2010; Zhu 
et al. 2012). DNA methylation is important 
for X-chromosome inactivation in women 
(Jones and Liang 2009), and although LINE-1 
sequences do not seem to be the major mecha
nism involved in this process, they may be 
involved in spreading the X-inactivation signal 
across the chromosome (Bailey et al. 2000). 
In support of this, a recent study showed that 
LINE-1 sequences were hypomethylated in the 
inactive X-chromosome (Singer et al. 2012). A 
small study of 33 men and 33 women reported 
lower levels of blood SAM in women (Poirier 
et al. 2001). Hormonal factors may also con-
tribute to the difference in methylation levels 
between sexes. However, a recent in vitro study 
assessing the roles of estrogen, progesterone, 
and dihydrotestosterone on DNA methylation 
in four cell lines found no detectable effect 
of these hormones on methylation levels at 
the LINE-1 and Alu repeats (El-Maarri et al. 
2011). Further studies are needed to decipher 
the relationship between sex and LINE-1 
methylation.

Because tobacco smoking is an impor-
tant contributor to disease and is a modifiable 
behavioral factor, there has been much inter-
est in the relationship between smoking and 
DNA methylation. Our findings are in line 
with other studies that reported no associa-
tion between LINE-1 methylation and smok-
ing status (Terry et al. 2011). In the present 
study, we found that subjects who smoked 

blond tobacco had lower levels of global DNA 
methylation than nonsmokers. An experi-
mental study has shown that cigarette smoke 
condensates can induce DNA demethyla
tion in repeat elements such as LINE-1 and 
D4Z4 (Liu et al. 2010). Both black and blond 
tobacco cause disease although the former is 
more mutagenic, reflective of the higher lev-
els of N-nitrosamines and aromatic amines in 
smoke produced by black tobacco (Malaveille 
et al. 1989). Our findings suggest that the toxic 
effects of blond tobacco could be mediated by 
modulating the epigenetic landscape. This may 
have a public health implication given epigen-
etic alterations are reversible.

We also provide evidence that arsenic 
levels were inversely associated with LINE-1 
methylation, and that arsenic may have a 
strong effect on LINE-1 methylation. For 
every 1-μg/g increase in arsenic there was a 
3.6% decrease in DNA methylation level. This 
inverse association is in agreement with that 
from a population-based study that used a 
similar assay to assess LINE-1 methylation 
levels and toenail concentrations of arsenic 
(Wilhelm et al. 2010), as well as with sev-
eral other experimental studies (Reichard and 
Puga 2010; Ren et al. 2011). The mechanisms 
through which arsenic exposure influences 
DNA methylation are not fully understood. 
Studies in cell lines and mouse models 
exposed to arsenic for ≤ 22 and 48 weeks, 
respectively, have shown that prolonged expo-
sure to sodium arsenite resulted in decreased 
global DNA methylation, and inhibition 
of DNA (cytosine-5-)-methyltransferase 1 
(DNMT1), DNMT3A, and DNA (cyto-
sine-5-)-methyltransferase 3 beta (DNMT3B) 
gene expression (Reichard and Puga 2010; 
Ren et  al. 2011). It is likely that through 
the combined effect of depleting the cellular 
pool of SAM and inhibiting the activity of 
DNMTs, both inorganic and organic arsenic 
may decrease global DNA methylation.

We are not aware of any human stud-
ies associating iron and nickel levels and 
global DNA methylation. In the present 
study, iron and nickel showed a small but 
significant positive association with LINE-1 
methylation level. Genes involved in hepa-
tocellular carcinoma (HCC) have been 
found to be hypermethylated in hereditary 
hemochromatosis, a disease characterized by 
chronic iron overload that is a risk factor for 
HCC (Lehmann et al. 2007). Iron, together 
with 2-oxoglutarate and oxygen, is an essen-
tial cofactor for the ten-eleven translocation 
(TET) family of proteins that hydroxylate 
5-methylcytosine to 5-hydroxymethylcytosine 
and further oxidize to 5-carboxylcytosine and 
5-formylcytosine, which have all been sug-
gested to be precursors for both active and 
passive DNA demethylation (Bhutani et al. 
2011). Experimental studies conducted in 
Chinese hamster cell lines (G12) treated with 
nickel chloride for up to 3 weeks have shown 
that nickel chloride treatment leads to both 
promoter hypermethylation and elevated 
total genomic DNA methylation (Lee YW 
et al. 1995, 1998). How nickel induces DNA 
methylation is not yet understood, but it 
has been proposed that nickel first induces 
chromatin condensation followed by de novo 
methylation of heterochromatic DNA 
(Lee YW et al. 1995).

The three SNPs with the strongest asso-
ciations with LINE-1 methylation were all 
in TCN2, including two exonic SNPs that 
result in missense substitutions (rs9606756 
and rs9621049) and one intronic SNP 
(rs4820887). SNPs rs9621049 and rs4820887 
have a linkage disequilibrium r2 value of 0.8, 
implying that the observed effect in LINE-1 
methylation may eventually be attributed 
to either of them. TCN2 encodes for trans
cobalamin  II which binds and transports 
vitamin B12 into the cell (Regec et al. 1995), 
suggesting that variations in TCN2 could 

Table 2. Association between LINE-1 methylation levels and SNPs in genes involved in the one-carbon metabolism pathway.

Gene
dbSNP [chromosome,  

position in the gene, locationa] MAF n MOI Genotype

Unadjusted Adjusted

β (95% CI) p-Value βb (95% CI) p-Value
DNMT3A rs7581217 [2, intron, 25378448] 0.39 875 Additive per allele T 0.3 (0.1, 0.6) 0.003 0.3 (0.1, 0.6) 0.002
AS3MT rs7085104 [10, flanking 5’UTR, 104618863] 0.38 751 Recessive AA/AG Ref Ref

124 GG 0.8 (0.3, 1.2) 0.0008 0.7 (0.3, 1.2) 0.001
MTHFSc rs1380642 [15, flanking 3’UTR, 77883926] 0.18 585 Codominant CC Ref 0.03 Ref 0.05

258 CT 0.3 (–0.05, 0.6) 0.3 (–0.08, 0.6)
32 TT –0.8 (–1.6, 0.07) –0.8 (–1.6, 0.09)

SLC19A1c rs914238 [21, flanking 5’UTR, 45840089] 0.49 231 Codominant TT Ref 0.0008 Ref 0.0007
435 TC 0.5 (0.09, 0.8) 0.5 (0.08, 0.8)
209 CC –0.2 (–0.7, 0.2) –0.3 (–0.7, 0.2)

TCN2d

 
 
 
 
 

rs9621049 [22, exon, 29343419]
 

0.11 864 Recessive CC/CT Ref Ref
11 TT 4.5 (3.1, 5.9) 4.3 × 10–10 4.2 (2.8, 5.7) 4.7 × 10–9

rs9606756 [22, exon, 29336860]
 

0.12 864 Recessive AA/AG Ref Ref
11 GG 2.2 (0.8, 3.6) 0.003 1.9 (0.5, 3.3) 0.008

rs4820887 [22, intron, 29346914]
 

0.10 866 Recessive GG/GA Ref Ref
9 AA 4.6 (3.0, 6.2) 9.3 × 10–9 4.0 (2.5, 5.6) 4.8 × 10–7

Abbreviations: MAF, minor allele frequency; MOI, mode of inheritance.
aHuman Genome Build 36.3 location. bAdjusted for age, sex, region, and smoking status. cGlobal p-value for rs1380642 and rs914238 was estimated by using a two-degree-of-freedom 
likelihood-ratio test. dLinkage disequilibrium (rs4820887 vs. rs9621049) r2 = 0.8.
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potentially impair the one-carbon metabolism 
pathway by altering the cytoplasmic concen-
tration of vitamin B12. TCN2-rs9606756 
leads to an I23V substitution located at a 
NAGNAG tandem acceptor site that is a tar-
get of alternative splicing (Hiller et al. 2006). 
TCN2-rs9621049 leads to a S348F and may 
also play a role in the availability of vitamin 
B12 in the cell thereby affecting LINE-1 
methylation levels.

Four SNPs in other genes (DNMT3A-​
rs7581217, AS3MT-rs7085104, MTHFS-​
rs1380642, SLC19A1-rs914238) involved in 
the one-carbon metabolism were also asso-
ciated with global DNA methylation in our 
study population. DNMT3A, a de novo DNA 
methyltransferase, establishes the patterns of 
methylation in early embryonic development, 
along with DNMT3B, and cooperates with 
DNMT1 to maintain the methylation of 
repetitive sequences such as LINE-1 and Alu 
elements (Jones and Liang 2009). Recurrent 
mutations in DNMT3A have been associated 
with adult hematologic malignancies (Ley 
et al. 2010; Yan et al. 2011), and mice lacking 
Dnmt3a die within the first weeks of post-
natal life (Robertson 2005). The product of 
AS3MT catalyzes the conversion of trivalent 
arsenic by adding a methyl group to mono
methylarsonic acid and dimethylarsonic acid 
(Ren et al. 2011); monomethylarsonic acid 
being the most toxic metabolite (Engström 
et al. 2011). rs7085104, located in the pro-
moter region of AS3MT, has been associated 
with arsenic metabolism, as evidenced by dif-
ferences in urinary concentration of arsenic 
metabolites (Engström et al. 2011; Valenzuela 
et al. 2009). We also observed a significant 
interaction of this SNP with levels of arsenic 
on LINE-1 methylation levels. Whereas sub-
jects with at least one copy of the major allele 

had a 4.1% decrease in methylation level per 
1-μg/g increase in arsenic, which is compa-
rable to the overall population (–3.6%), those 
homozygous for the variant allele had a 10% 
increase in LINE-1 methylation. These find-
ings support the putative functionality of the 
association. The product of MTHFS catalyzes 
the conversion of 5-formyltetrahydrofolate 
to 5,10-methenyltetrahydrofolate and a 
genome-wide association study reported an 
association between a variant in this gene and 
chronic kidney disease (Kottgen et al. 2008). 
SLC19A1 is a ubiquitously expressed major 
transporter of folate and antifolates and reg-
ulator of the intracellular concentrations of 
folate (Matherly et al. 2007). Common vari-
ants in this gene have been associated with 
plasma folate levels, various types of cancer 
(esophageal, gastric, and acute lymphoblastic 
leukemia), and altered methotrexate transport 
and adverse effects of methotrexate (Matherly 
et al. 2007).

Among the limitations of the study is that 
the majority of paraticipants were of advanced 
age (mean = 64 years of age, SD = 10 years) 
and male. This may explain the lack of 
association between DNA methylation and 
age in our study population, in contrast with 
other studies that included subjects with a 
broader age range (Fraga et al. 2005). Thus, 
our findings refer to an adult population of 
mostly men. Results were consistent with esti-
mates for the population as a whole when 
stratified by sex, with the exception of nickel, 
tobacco type, and MTHFS-rs1380642, which 
become nonsignificant when the point esti-
mates were in the same direction (data not 
shown). These differences may reflect reduced 
power to estimate associations among women 
as a result of the small sample size. The pres-
ence of missing data for some of the variables 

might have resulted in decreased power, but 
even with the available sample size we were 
able to reproduce previous results and iden-
tify novel predictors of LINE-1 methylation. 
Furthermore, although the study subjects 
were recruited from hospitals, none of reasons 
for hospitalization were significantly associ-
ated with LINE-1 methylation.

Strengths of the study include its size 
and the availability and quality of individual 
data on demographics, lifestyle, environmen-
tal exposures, and genetics. Additionally, we 
assessed LINE-1 methylation levels, which 
are considered a good marker of global DNA 
methylation (Yang et al. 2004), using pyro
sequencing, which gives accurate and reproduc-
ible measurements (Estécio et al. 2007; Laird 
2010; Tost and Gut 2007). Furthermore, this 
assessment was made using DNA from granu-
locytes, thereby avoiding a possible effect of cell 
blood count in our study.

To the best of our knowledge, this is the 
first study to identify seven SNPs in associa-
tion with changes in LINE-1 methylation and 
to integrate different types of information to 
assess the determinants of global methylation 
in blood DNA. Integration of both internal 
and external exposure data in this study is a 
step forward in understanding how the expo-
some modulates DNA methylation patterns.

Conclusions
The present study provides further evidence 
that DNA methylation levels are influ-
enced by variants in genes involved in the 
one-carbon metabolism pathway, and expo-
sure to trace elements and tobacco smoke. 
Given the fact that smoking and some of the 
genetic variants and trace elements associ-
ated with LINE-1 methylation in the present 
study have also been associated with adverse 
health outcomes including cancer, our results 
provide additional insight into the potential 
mechanism through which these agents par-
ticipate in the development of those diseases. 
Furthermore, these factors should be con-
sidered as potential confounders in etiologic 
and interventional studies analyzing the role 
of DNA methylation in disease. Nevertheless, 
future studies are required to replicate and 
extend our findings in different populations.
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Appendix 1
Spanish Bladder Cancer/EPICURO Study investigators
Institut Municipal d’Investigació Mèdica, Universitat Pompeu Fabra, Barcelona–Coordinating Center 
(M. Kogevinas, N. Malats, F.X. Real, M. Sala, G. Castaño, M. Torà, D. Puente, C. Villanueva, 
C. Murta-Nascimento, J. Fortuny, E. López, S. Hernández, R. Jaramillo, G. Vellalta, L. Palencia, 
F. Fermández, A. Amorós, A. Alfaro, G. Carretero); Hospital del Mar, Universitat Autònoma de 
Barcelona, Barcelona (J. Lloreta, S. Serrano, L. Ferrer, A. Gelabert, J. Carles, O. Bielsa, K. Villadiego); 
Hospital Germans Trias i Pujol, Badalona, Barcelona (L. Cecchini, J.M. Saladié, L. Ibarz); Hospital 
de Sant Boi, Sant Boi de Llobregat, Barcelona (M. Céspedes); Consorci Hospitalari Parc Taulí, 
Sabadell (C. Serra, D. García, J. Pujadas, R. Hernando, A. Cabezuelo, C. Abad, A. Prera, J. Prat); 
Centre Hospitalari i Cardiològic, Manresa, Barcelona (M. Domènech, J. Badal, J. Malet); Hospital 
Universitario de Canarias, La Laguna, Tenerife (R. García-Closas, J. Rodríguez de Vera, A.I. Martín); 
Hospital Universitario Nuestra Señora de la Candelaria, Tenerife (J. Taño, F. Cáceres); Hospital General 
Universitario de Elche, Universidad Miguel Hernández, Elche, Alicante (A. Carrato, F. García-López, 
M. Ull, A. Teruel, E. Andrada, A. Bustos, A. Castillejo, J.L. Soto); Universidad de Oviedo, Oviedo, 
Asturias (A. Tardón); Hospital San Agustín, Avilés, Asturias (J.L. Guate, J.M. Lanzas, J. Velasco); 
Hospital Central Covadonga, Oviedo, Asturias (J.M. Fernández, J.J. Rodríguez, A. Herrero); Hospital 
Central General, Oviedo, Asturias (R. Abascal, C. Manzano, T. Miralles); Hospital de Cabueñes, Gijón, 
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