33 research outputs found
A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans
Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource
Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity
Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples
Genetic diversity in cultivated carioca common beans based on molecular marker analysis
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm
Use Of Chloroplast Dna Polymorphisms For The Phylogenetic Study Of 7 Phaseolus Taxa Including Phaseolus-Vulgaris And P-Coccineus
The genetic variable of seven Phaseolus taxa has been evaluated on the basis of molecular data and the results have used to clarify the phyletic relationships between several taxa of the P. coccineus L. complex. Chloroplast DNA (cpDNA) from 33 populations was digested with six restriction endonucleases, revealing some polymorphisms that made it possible to divide most of the taxa into two main groups: the subspecies of P. coccineus on the one hand and P. vulgaris L., P. polyanthus Greenman and P. costaricensis (Freytag and Debouck) on the other hand. P. polyanthus is closer to P. vulgaris than the other taxa of the second group and should be considered as a separate species. The position of the wild species P. costaricensis is intermediate between P. coccineus and P. polyanthus. P. glabellus shows sufficient polymorphisms at the cpDNA level to be recognized as a separate species, as previously suggested from total seed-protein electrophoretic studies. These results favour the hypothesis of a common phylogeny for P. vulgaris, P. polyanthus, P. costaricensis, and P. coccineus from a single wild ancestor. Although cpDNA is generally known to be uniform at the intraspecific level, some additional polymorphisms were also detected within P. vulgaris, P. polyanthus and P. coccineus. Further studies are required to understand the significance of the latter.Peer-reviewe