124 research outputs found

    In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress

    Get PDF
    Activation of the mammalian heat shock transcription factor (HSF)1 by stress is a multistep process resulting in the transcription of heat shock genes. Coincident with these events is the rapid and reversible redistribution of HSF1 to discrete nuclear structures termed HSF1 granules, whose function is still unknown. Key features are that the number of granules correlates with cell ploidy, suggesting the existence of a chromosomal target. Here we show that in humans, HSF1 granules localize to the 9q11-q12 heterochromatic region. Within this locus, HSF1 binds through direct DNA–protein interaction with a nucleosome-containing subclass of satellite III repeats. HSF1 granule formation only requires the DNA binding competence and the trimerization of the factor. This is the first example of a transcriptional activator that accumulates transiently and reversibly on a chromosome-specific heterochromatic locus

    Cardiac autonomic function and hot flashes among perimenopausal and postmenopausal women.

    Get PDF
    ObjectiveAbnormalities in autonomic function are posited to play a pathophysiologic role in menopausal hot flashes. We examined relationships between resting cardiac autonomic activity and hot flashes in perimenopausal and postmenopausal women.MethodsAutonomic function was assessed at baseline and 12 weeks among perimenopausal and postmenopausal women (n = 121, mean age 53 years) in a randomized trial of slow-paced respiration for hot flashes. Pre-ejection period (PEP), a marker of sympathetic activation, was measured with impedance cardiography. Respiratory sinus arrhythmia (RSA), a marker of parasympathetic activation, was measured with electrocardiography. Participants self-reported hot flash frequency and severity in 7-day symptom diaries. Analysis of covariance models were used to relate autonomic function and hot flash frequency and severity at baseline, and to relate changes in autonomic function to changes in hot flash frequency and severity over 12 weeks, adjusting for age, body mass index, and intervention assignment.ResultsPEP was not associated with hot flash frequency or severity at baseline or over 12 weeks (P > 0.05 for all). In contrast, there was a trend toward greater frequency of moderate-to-severe hot flashes with higher RSA at baseline (β = 0.43, P = 0.06), and a positive association between change in RSA and change in frequency of moderate-to-severe hot flashes over 12 weeks (β = 0.63, P = 0.04).ConclusionsAmong perimenopausal and postmenopausal women with hot flashes, variations in hot flash frequency and severity were not explained by variations in resting sympathetic activation. Greater parasympathetic activation was associated with more frequent moderate-to-severe hot flashes, which may reflect increased sensitivity to perceiving hot flashes

    Molecular genetic contribution to the developmental course of attention-deficit hyperactivity disorder

    Full text link
    Objective: The developmental trajectory of attention-deficit hyperactivity disorder (ADHD) is variable. Utilizing a longitudinally assessed sample, we investigated the contribution of susceptibility gene variants, previously implicated through pooled or meta-analyses, to the developmental course of Attention-Deficit Hyperactivity Disorder over time. Methods: 151 children (aged 6–12) who met diagnostic criteria for ADHD were assessed using research diagnostic interviews during childhood and 5 years later in adolescence. Severity was defined as total number of ADHD symptoms at baseline and reassessment. Association with variants at DRD4, DRD5, and the dopamine transporter gene, DAT was analyzed using linear regression. Results: As expected, affected individuals showed a decline in ADHD severity over time. The DRD4 48 bp VNTR 7-repeat and DRD5 CA(n) microsatellite marker 148 bp risk alleles were associated with persistent ADHD. Those possessing the DRD4 7 repeat risk allele showed less of a decline in severity at reassessment than those without the risk allele. Conclusions: Those carrying the DRD4 7 risk allele showed greater symptom severity at follow-up and less ADHD reduction over time. These findings support the hypothesis that some susceptibility genes for ADHD also influence its developmental course

    Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies

    Get PDF
    Introduction: Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. Methods: We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40%/60% with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. Results: For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9% (p < 0.001), 17.9% (p = 0.005), 20.9% (p < 0.001), and 21.7% (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. Conclusion: We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality

    Traditional Nonsteroidal Anti-Inflammatory Drugs and Postmenopausal Hormone Therapy: A Drug–Drug Interaction?

    Get PDF
    It is controversial whether estrogens confer cardioprotection. This study suggests that even should such a benefit exist, COX inhibitors may undermine cardioprotective effects of hormone therapy

    DRD4 genotype predicts longevity in mouse and human

    Get PDF
    Longevity is influenced by genetic and environmental factors. The brain's dopamine system may be particularly relevant, since it modulates traits (e.g., sensitivity to reward, incentive motivation, sustained effort) that impact behavioral responses to the environment. In particular, the dopamine D4 receptor (DRD4) has been shown to moderate the impact of environments on behavior and health. We tested the hypothesis that the DRD4 gene influences longevity and that its impact is mediated through environmental effects. Surviving participants of a 30-year-old population-based health survey (N = 310; age range, 90-109 years; the 90+ Study) were genotyped/resequenced at the DRD4 gene and compared with a European ancestry-matched younger population (N = 2902; age range, 7-45 years). We found that the oldest-old population had a 66% increase in individuals carrying the DRD4 7R allele relative to the younger sample (p = 3.5 × 10(-9)), and that this genotype was strongly correlated with increased levels of physical activity. Consistent with these results, DRD4 knock-out mice, when compared with wild-type and heterozygous mice, displayed a 7-9.7% decrease in lifespan, reduced spontaneous locomotor activity, and no lifespan increase when reared in an enriched environment. These results support the hypothesis that DRD4 gene variants contribute to longevity in humans and in mice, and suggest that this effect is mediated by shaping behavioral responses to the environment.Fil: Grady, Deborah L.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Thanos, Panayotis K.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. Stony Brook University. Department of Psychology; Estados UnidosFil: Corrada, Maria M.. University of California. Department of Neurology; Estados UnidosFil: Barnett Jr., Jeffrey C.. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Ciobanu, Valentina. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Shustarovich, Diana. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Napoli, Anthony. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Moyzis, Alexandra G.. University of California. College of Medicine. Department of Biological Chemistry; Estados UnidosFil: Grandy, David. Oregon Health Sciences University. Physiology and Pharmacology; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; ArgentinaFil: Wang, Gene-Jack. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados UnidosFil: Kawas, Claudia H.. University of California. Department of Neurology; Estados UnidosFil: Chen, Chuansheng. University of California. Department of Psychology and Social Behavior; Estados UnidosFil: Dong, Qi. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; ChinaFil: Wang, Eric. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Aria Diagnostics Inc.; Estados Unidos. University of California. Institute of Genomics and Bioinformatics; Estados UnidosFil: Volkow, Nora D.. National Institute on Alcohol Abuse and Alcoholism. Laboratory of Neuroimaging; Estados Unidos. Brookhaven National Laboratory. Medical Department. Behavioral Neuropharmocology and Neuroimaging Laboratory; Estados Unidos. National Institute on Drug Abuse; Estados UnidosFil: Moyzis, Robert K.. University of California. College of Medicine. Department of Biological Chemistry; Estados Unidos. Beijing Normal University. National Key Laboratory of Cognitive Neuroscience and Learning; China. University of California. Institute of Genomics and Bioinformatics; Estados Unido

    The Day-to-Day Impact of Urogenital Aging: Perspectives from Racially/Ethnically Diverse Women

    Get PDF
    Urogenital symptoms affect up to half of women after menopause, but their impact on women’s day-to-day functioning and wellbeing is poorly understood. Postmenopausal women aged 45 to 80 years reporting urogenital dryness, soreness, itching, or pain during sex were recruited to participate in in-depth focus groups to discuss the impact of their symptoms. Focus groups were homogenous with respect to race/ethnicity and stratified by age (for White or Black women) or language (for Latina women). Transcripts of sessions were analyzed according to grounded theory. Six focus groups were conducted, involving 44 women (16 White, 14 Black, 14 Latina). Five domains of functioning and wellbeing affected by symptoms were identified: sexual functioning, everyday activities, emotional wellbeing, body image, and interpersonal relations. For some participants, symptoms primarily affected their ability to have and enjoy sex, as well as be responsive to their partners. For others, symptoms interfered with everyday activities, such as exercising, toileting, or sleeping. Participants regarded their symptoms as a sign that they were getting old or their body was deteriorating; women also associated symptoms with a loss of womanhood or sexuality. Additionally, participants reported feeling depressed, embarrassed, and frustrated about their symptoms, and expressed reluctance to discuss them with friends, family, or health care providers. Urogenital symptoms can have a marked impact on sexual functioning, everyday activities, emotional wellbeing, body image, and interpersonal relations after menopause. Clinicians may need to question women actively about these symptoms, as many are reluctant to seek help for this problem

    Rare loss of function variants in candidate genes and risk of colorectal cancer

    Get PDF
    Although ~ 25% of colorectal cancer or polyp (CRC/P) cases show familial aggregation, current germline genetic testing identifies a causal genotype in the 16 major genes associated with high penetrance CRC/P in only 20% of these cases. As there are likely other genes underlying heritable CRC/P, we evaluated the association of variation at novel loci with CRC/P. We evaluated 158 a priori selected candidate genes by comparing the number of rare potentially disruptive variants (PDVs) found in 84 CRC/P cases without an identified CRC/P risk-associated variant and 2440 controls. We repeated this analysis using an additional 73 CRC/P cases. We also compared the frequency of PDVs in select genes among CRC/P cases with two publicly available data sets. We found a significant enrichment of PDVs in cases vs. controls: 20% of cases vs. 11.5% of controls with ≥ 1 PDV (OR = 1.9, p = 0.01) in the original set of cases. Among the second cohort of CRC/P cases, 18% had a PDV, significantly different from 11.5% (p = 0.02). Logistic regression, adjusting for ancestry and multiple testing, indicated association between CRC/P and PDVs in NTHL1 (p = 0.0001), BRCA2 (p = 0.01) and BRIP1 (p = 0.04). However, there was no significant difference in the frequency of PDVs at each of these genes between all 157 CRC/P cases and two publicly available data sets. These results suggest an increased presence of PDVs in CRC/P cases and support further investigation of the association of NTHL1, BRCA2 and BRIP1 variation with CRC/P
    corecore