19 research outputs found

    Loss of SNAP29 Impairs Endocytic Recycling and Cell Motility

    Get PDF
    Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling of transferrin and β1-integrin. Impaired β1-integrin recycling affected cell motility, as reflected by changes in cell spreading and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29 mediated membrane fusion in endocytic recycling and consequently, in cell motility

    International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood

    Get PDF
    : This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle

    A Mutation in SNAP29, Coding for a SNARE Protein Involved in Intracellular Trafficking, Causes a Novel Neurocutaneous Syndrome Characterized by Cerebral Dysgenesis, Neuropathy, Ichthyosis, and Palmoplantar Keratoderma

    No full text
    Neurocutaneous syndromes represent a vast, largely heterogeneous group of disorders characterized by neurological and dermatological manifestations, reflecting the common embryonic origin of epidermal and neural tissues. In the present report, we describe a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma (CEDNIK syndrome). Using homozygosity mapping in two large families, we localized the disease gene to 22q11.2 and identified, in all patients, a 1-bp deletion in SNAP29, which codes for a SNARE protein involved in vesicle fusion. SNAP29 expression was decreased in the skin of the patients, resulting in abnormal maturation of lamellar granules and, as a consequence, in mislocation of epidermal lipids and proteases. These data underscore the importance of vesicle trafficking regulatory mechanisms for proper neuroectodermal differentiation
    corecore