18 research outputs found

    Genome-based characterization of Yersinia enterocolitica

    Get PDF

    Genome-based characterization of Yersinia enterocolitica

    Get PDF

    Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    Get PDF
    Background: Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. Results: Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity < 50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. Conclusions: Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype

    Tracing genomic variations in two highly virulent Yersinia enterocolitica strains with unequal ability to compete for host colonization

    Get PDF
    Background: Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. Results: Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity < 50% with the orthologous proteins in strain 8081. The dissimilar sequences of these proteins indicate possible different functions or interaction modes, reflecting the specific adhesion properties of Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. Conclusions: Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype

    Usability of rectal swabs for microbiome sampling in a cohort study of hematological and oncological patients

    Get PDF
    Objectives Large-scale clinical studies investigating associations between intestinal microbiota signatures and human diseases usually rely on stool samples. However, the timing of repeated stool sample collection cannot be predefined in longitudinal settings. Rectal swabs, being straightforward to obtain, have the potential to overcome this drawback. Therefore, we assessed the usability of rectal swabs for microbiome sampling in a cohort of hematological and oncological patients. Study design We used a pipeline for intestinal microbiota analysis from deep rectal swabs which was established and validated with test samples and negative controls. Consecutively, a cohort of patients from hematology and oncology wards was established and weekly deep rectal swabs taken during their admissions and re-admissions. Results Validation of our newly developed pipeline for intestinal microbiota analysis from rectal swabs revealed consistent and reproducible results. Over a period of nine months, 418 rectal swabs were collected longitudinally from 41 patients. Adherence to the intended sampling protocol was 97%. After DNA extraction, sequencing, read pre-processing and filtering of chimeric sequences, 405 of 418 samples (96.9%) were eligible for further analyses. Follow-up samples and those taken under current antibiotic exposure showed a significant decrease in alpha diversity as compared to baseline samples. Microbial domination occurred most frequently by Enterococcaceae (99 samples, 24.4%) on family level and Enterococcus (90 samples, 22.2%) on genus level. Furthermore, we noticed a high abundance of potential skin commensals in 99 samples (24.4%). Summary Deep rectal swabs were shown to be reliable for microbiome sampling and analysis, with practical advantages related to high sampling adherence, easy timing, transport and storage. The relatively high abundance of putative skin commensals in this patient cohort may be of potential interest and should be further investigated. Generally, previous findings on alpha diversity dynamics obtained from stool samples were confirmed

    Tracing genomic variations in two highly virulent <it>Yersinia enterocolitica</it> strains with unequal ability to compete for host colonization

    No full text
    Abstract Background Yersinia enterocolitica is a gastrointestinal foodborne pathogen found worldwide and which especially affects infants and young children. While different bioserotypes have been associated with varying pathogenicity, research on Y. enterocolitica is mainly conducted on the highly virulent mouse-lethal strains of biotype 1B and serotype O:8. We demonstrate here that two Y. enterocolitica bioserotype 1B/O:8 strains, 8081 and WA-314, display different virulence and fitness properties in a mouse model. In vivo co-infection experiments revealed that strain WA-314 overcomes strain 8081 in the colonization of spleen and liver. To trace the reasons of this incongruity, we present here the first high-quality sequence of the whole genome of strain WA-314 and compare it to the published genome of strain 8081. Results Regions previously accepted as unique to strain 8081, like the YAPI and YGI-3 genomic islands, are absent from strain WA-314, confirming their strain-specificity. On the other hand, some fitness- and bacterial competition-associated features, such as a putative colicin cluster and a xenobiotic-acyltransferase-encoding gene, are unique to strain WA-314. Additional acquisitions of strain WA-314 are seven prophage-like regions. One of these prophages, the 28-kb P4-like prophage YWA-4, encodes a PilV-like protein that may be used for adhesion to and invasion of the intestinal cells. Furthermore, a putative autotransporter and two type 1 fimbrial proteins of strain WA-314 show a sequence similarity Y. enterocolitica strains 8081 and WA-314 and thus the different efficiency of host colonization. Further important differences were found in two pYV plasmid-encoded virulence factors, YopM and YscP. The impact of these differences on virulence is discussed. Conclusions Our study emphasizes that the virulence of pathogens can be increased, by acquiring new genes and/or improving the function of essential virulence proteins, resulting in permanently hyper-virulent strains. This work also highlights the importance of addressing genetic and phenotypic variations among closely related bacterial strains, even those belonging to the same bioserotype.</p

    High-Quality Whole-Genome Sequences of the Oligo-Mouse-Microbiota Bacterial Community.

    Get PDF
    The Oligo-Mouse-Microbiota (Oligo-MM12) is a community of 12 mouse intestinal bacteria to be used for microbiome research in gnotobiotic mice. We present here the high-quality whole genome sequences of the Oligo-MM12 strains, which were obtained by combining the accuracy of the Illumina platforms with the long reads of the PacBio technology

    Microbiota differences between commercial breeders impacts the post-stroke immune response

    No full text
    Experimental reproducibility between laboratories is a major translational obstacle worldwide, particularly in studies investigating immunomodulatory therapies in relation to brain disease. In recent years increasing attention has been drawn towards the gut microbiota as a key factor in immune cell polarization. Moreover, manipulation of the gut microbiota has been found effective in a diverse range of brain disorders. Within this study we aimed to test the impact of microbiota differences between mice from different sources on the post-stroke neuroinflammatory response. With this rationale, we have investigated the correlation between microbiota differences and the immune response in mice from three commercial breeders with the same genetic background (C57BL/6). While overall bacterial load was comparable, we detected substantial differences in species diversity and microbiota composition on lower taxonomic levels. Specifically, we investigated segmented filamentous bacteria (SFB)—which have been shown to promote T cell polarization—and found that they were absent in mice from one breeder but abundant in others. Our experiments revealed a breeder specific correlation between SFB presence and the ratio of Treg to Th17 cells. Moreover, recolonization of SFB-negative mice with SFB resulted in a T cell shift which mimicked the ratios found in SFB-positive mice. We then investigated the response to a known experimental immunotherapeutic approach, CD28 superagonist (CD28SA), which has been previously shown to expand the Treg population. CD28SA treatment had differing effects between mice from different breeders and was found to be ineffective at inducing Treg expansion in SFB-free mice. These changes directly corresponded to stroke outcome as mice lacking SFB had significantly larger brain infarcts. This study demonstrates the major impact of microbiota differences on T cell polarization in mice during ischemic stroke conditions, and following immunomodulatory therapies.This work was supported by the German Research Foundation (DFG, LI 2534/1-1 and LI2534/2-1) and by the Excellence cluster of the German research foundation “Munich Cluster for Systems Neurology (SyNergy)” to AL, and the National Institute of Health (NS094507) to JA.Peer reviewe

    Unique Activity Spectrum of Colicin F<sub>Y</sub>: All 110 Characterized <i>Yersinia enterocolitica</i> Isolates Were Colicin F<sub>Y</sub> Susceptible

    Get PDF
    <div><p>Colicin F<sub>Y</sub> is a plasmid encoded toxin that recognizes a yersinia-specific outer membrane protein (YiuR) as a receptor molecule. We have previously shown that the activity spectrum of colicin F<sub>Y</sub> comprises strains of the genus <i>Yersinia</i>. In this study, we analyzed the activity of colicin F<sub>Y</sub> against 110 <i>Yersinia enterocolitica</i> isolates differing in geographical origin and source. All isolates were characterized through analysis of 16S rRNA genes, serotyping, biotyping, restriction profiling of genomic DNA, detection of virulence markers and susceptibility to antibiotics. This confirmed the broad variability of the collection, in which all 110 <i>Y. enterocolitica</i> isolates, representing 77 various strains, were inhibited by colicin F<sub>Y</sub>. Although isolates showed variable levels of susceptibility to colicin F<sub>Y</sub>, it was not associated with any strain characteristic. The universal susceptibility of <i>Y. enterocolitica</i> strains to colicin F<sub>Y</sub> together with the absence of activity towards strains outside the <i>Yersinia</i> genus suggests potential therapeutic applications for colicin F<sub>Y</sub>.</p></div

    Usability of rectal swabs for microbiome sampling in a cohort study of hematological and oncological patients

    Get PDF
    Objectives: Large-scale clinical studies investigating associations between intestinal microbiota signatures and human diseases usually rely on stool samples. However, the timing of repeated stool sample collection cannot be predefined in longitudinal settings. Rectal swabs, being straightforward to obtain, have the potential to overcome this drawback. Therefore, we assessed the usability of rectal swabs for microbiome sampling in a cohort of hematological and oncological patients. Study design: We used a pipeline for intestinal microbiota analysis from deep rectal swabs which was established and validated with test samples and negative controls. Consecutively, a cohort of patients from hematology and oncology wards was established and weekly deep rectal swabs taken during their admissions and re-admissions. Results: Validation of our newly developed pipeline for intestinal microbiota analysis from rectal swabs revealed consistent and reproducible results. Over a period of nine months, 418 rectal swabs were collected longitudinally from 41 patients. Adherence to the intended sampling protocol was 97%. After DNA extraction, sequencing, read pre-processing and filtering of chimeric sequences, 405 of 418 samples (96.9%) were eligible for further analyses. Follow-up samples and those taken under current antibiotic exposure showed a significant decrease in alpha diversity as compared to baseline samples. Microbial domination occurred most frequently by Enterococcaceae (99 samples, 24.4%) on family level and Enterococcus (90 samples, 22.2%) on genus level. Furthermore, we noticed a high abundance of potential skin commensals in 99 samples (24.4%). Summary: Deep rectal swabs were shown to be reliable for microbiome sampling and analysis, with practical advantages related to high sampling adherence, easy timing, transport and storage. The relatively high abundance of putative skin commensals in this patient cohort may be of potential interest and should be further investigated. Generally, previous findings on alpha diversity dynamics obtained from stool samples were confirmed
    corecore