31 research outputs found
Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron
A new exclusion limit for the electromagnetic production of a light U(1)
gauge boson {\gamma}' decaying to e^+e^- was determined by the A1 Collaboration
at the Mainz Microtron. Such light gauge bosons appear in several extensions of
the standard model and are also discussed as candidates for the interaction of
dark matter with standard model matter. In electron scattering from a heavy
nucleus, the existing limits for a narrow state coupling to e^+e^- were reduced
by nearly an order of magnitude in the range of the lepton pair mass of 210
MeV/c^2 < m_e^+e^- < 300 MeV/c^2. This experiment demonstrates the potential of
high current and high resolution fixed target experiments for the search for
physics beyond the standard model.Comment: 4 pages, 7 figure
The electric and magnetic form factors of the proton
The paper describes a precise measurement of electron scattering off the
proton at momentum transfers of \ GeV. The
average point-to-point error of the cross sections in this experiment is
0.37%. These data are used for a coherent new analysis together with all world
data of unpolarized and polarized electron scattering from the very smallest to
the highest momentum transfers so far measured. The extracted electric and
magnetic form factors provide new insight into their exact shape, deviating
from the classical dipole form, and of structure on top of this gross shape.
The data reaching very low values are used for a new determination of the
electric and magnetic radii. An empirical determination of the
Two-Photon-Exchange (TPE) correction is presented. The implications of this
correction on the radii and the question of a directly visible signal of the
pion cloud are addressed.Comment: 38 pages, 20 figures. Updated data files. PRC versio
High-precision determination of the electric and magnetic form factors of the proton
New precise results of a measurement of the elastic electron-proton
scattering cross section performed at the Mainz Microtron MAMI are presented.
About 1400 cross sections were measured with negative four-momentum transfers
squared up to Q^2=1 (GeV/c)^2 with statistical errors below 0.2%. The electric
and magnetic form factors of the proton were extracted by fits of a large
variety of form factor models directly to the cross sections. The form factors
show some features at the scale of the pion cloud. The charge and magnetic
radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm
and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.Comment: 5 pages, 2 figures, published in Phys. Rev. Lett. v3: added
references, updated text, color figure
Reply to Comment on "High-Precision Determination of the Electric and Magnetic Form Factors of the Proton"
In arXiv:1108.3058v1 [nucl-ex], Arrington criticizes the Coulomb corrections
we applied in the analysis of high precision form factor data (see
Phys.Rev.Lett.105:242001, 2010, arXiv:1007.5076v3 [nucl-ex]). We show, by
comparing different calculations cited in the Comment, that the criticism of
the Comment neglects the large uncertainty of "more modern" TPE corrections.
This uncertainty has also been seen in recent polarized measurements. We rerun
our analysis using one of these calculations. The results show that the Comment
exaggerates the quantitative effect at small Q^2.Comment: 1 page, 2 figure, To appear as a Reply Comment in Physical Review
Letter
A Large-Scale FPGA-Based Trigger and Dead-Time Free DAQ System for the Kaos Spectrometer at MAMI
The Kaos spectrometer is maintained by the A1 collaboration at the Mainz
Microtron MAMI with a focus on the study of (e,e'K^+) coincidence reactions.
For its electron-arm two vertical planes of fiber arrays, each comprising
approximately 10 000 fibers, are operated close to zero degree scattering angle
and in close proximity to the electron beam. A nearly dead-time free DAQ system
to acquire timing and tracking information has been installed for this
spectrometer arm. The signals of 144 multi-anode photomultipliers are collected
by 96-channel front-end boards, digitized by double-threshold discriminators
and the signal time is picked up by state-of-the-art F1 time-to-digital
converter chips. In order to minimize background rates a sophisticated trigger
logic was implemented in newly developed Vuprom modules. The trigger performs
noise suppression, signal cluster finding, particle tracking, and coincidence
timing, and can be expanded for kinematical matching (e'K^+) coincidences. The
full system was designed to process more than 4 000 read-out channels and to
cope with the high electron flux in the spectrometer and the high count rate
requirement of the detectors. It was successfully in-beam tested at MAMI in
2009.Comment: Contributed to 17th IEEE Real Time Conference (RT10), Lisbon, 24-28
May 201
Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2
Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0
electroproduction reactions have been performed at the Mainz Microtron MAMI in
the A1 spectrometer facility using for the first time the Kaos spectrometer for
kaon detection. These processes were studied in a kinematical region not
covered by any previous experiment. The nucleon was probed in its third
resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055
(GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from
photoproduction to electroproduction cross sections. Comparison with
predictions of effective Lagrangian models based on the isobar approach reveal
that strong longitudinal couplings of the virtual photon to the N* resonances
can be excluded from these models.Comment: 16 pages, 7 figure
Search for light massive gauge bosons as an explanation of the anomaly at MAMI
A massive, but light abelian U(1) gauge boson is a well motivated possible
signature of physics beyond the Standard Model of particle physics. In this
paper, the search for the signal of such a U(1) gauge boson in
electron-positron pair-production at the spectrometer setup of the A1
Collaboration at the Mainz Microtron (MAMI) is described. Exclusion limits in
the mass range of 40 MeV up to 300 MeV with a sensitivity in the mixing
parameter of down to are presented. A large
fraction of the parameter space has been excluded where the discrepancy of the
measured anomalous magnetic moment of the muon with theory might be explained
by an additional U(1) gauge boson.Comment: 4 pages, 3 figure
Observation of Lambda H-4 hyperhydrogen by decay-pion spectroscopy in electron scattering
At the Mainz Microtron MAMI, the first high-resolution pion spectroscopy from
decays of strange systems was performed by electron scattering off a Be-9
target in order to study the ground-state masses of Lambda-hypernuclei.
Positively charged kaons were detected by a short-orbit spectrometer with a
broad momentum acceptance at zero degree forward angles with respect to the
beam, efficiently tagging the production of strangeness in the target nucleus.
In coincidence, negatively charged decay-pions were detected by two independent
high-resolution spectrometers. About 10^3 pionic weak decays of hyperfragments
and hyperons were observed. The pion momentum distribution shows a
monochromatic peak at p_pi ~ 133 MeV/c, corresponding to the unique signature
for the two-body decay of hyperhydrogen Lambda H-4 -> He-4 + pi-, stopped
inside the target. Its binding energy was determined to be B_Lambda = 2.12 +-
0.01 (stat.) +- 0.09 (syst.) MeV with respect to the H-3 + Lambda mass