141 research outputs found

    Acquisition of subcortical auditory potentials with around-the-Ear cEEGrid technology in normal and hearing impaired listeners

    Get PDF
    Even though the principles of recording brain electrical activity remain unchanged since their discovery, their acquisition has seen major improvements. The cEEGrid, a recently developed flex-printed multi-channel sensory array, can be placed around the ear and successfully record well-known cortical electrophysiological potentials such as late auditory evoked potentials (AEPs) or the P300. Due to its fast and easy application as well as its long-lasting signal recording window, the cEEGrid technology offers great potential as a flexible and 'wearable' solution for the acquisition of neural correlates of hearing. Early potentials of auditory processing such as the auditory brainstem response (ABR) are already used in clinical assessment of sensorineural hearing disorders and envelope following responses (EFR) have shown promising results in the diagnosis of suprathreshold hearing deficits. This study evaluates the suitability of the cEEGrid electrode configuration to capture these AEPs. cEEGrid potentials were recorded and compared to cap-EEG potentials for young normal-hearing listeners and older listeners with high-frequency sloping audiograms to assess whether the recordings are adequately sensitive for hearing diagnostics. ABRs were elicited by presenting clicks (70 and 100-dB peSPL) and stimulation for the EFRs consisted of 120 Hz amplitudemodulated white noise carriers presented at 70-dB SPL. Data from nine bipolar cEEGrid channels and one classical cap-EEG montage (earlobes to vertex) were analysed and outcome measures were compared. Results show that the cEEGrid is able to record ABRs and EFRs with comparable shape to those recorded using a conventional capEEG recording montage and the same amplifier. Signal strength is lower but can still produce responses above the individual neural electrophysiological noise floor. This study shows that the application of the cEEGrid can be extended to the acquisition of early auditory evoked potentials

    I can't wait! Neural reward signals in impulsive individuals exaggerate the difference between immediate and future rewards

    No full text
    Waiting for rewards is difficult, and highly impulsive individuals with low self-control have an especially hard time with it. Here, we investigated whether neural responses to rewards in a delayed gratification task predict impulsivity and self-control. The EEG was recorded from participants engaged in a guessing game in which on each trial they could win either a large or small reward, paid either now or after 6 months. Ratings confirmed that participants preferred immediate, large rewards over small, delayed rewards. Electrophysiological reward signals reflecting the difference between immediate and future rewards predicted self-report measures of impulsivity and self-control. Further, these signals were highly reliable across two sessions over a 1-week interval, showing high temporal stability like stable personality traits. These results suggest that greater valuation of immediate rewards causes impulsive individuals to redirect control away from delayed rewards, indicating why it is so hard for them to wait

    Investigating cognitive-motor effects during slacklining using mobile EEG

    Get PDF
    Balancing is a very important skill, supporting many daily life activities. Cognitive-motor interference (CMI) dual-tasking paradigms have been established to identify the cognitive load of complex natural motor tasks, such as running and cycling. Here we used wireless, smartphone-recorded electroencephalography (EEG) and motion sensors while participants were either standing on firm ground or on a slackline, either performing an auditory oddball task (dual-task condition) or no task simultaneously (single-task condition). We expected a reduced amplitude and increased latency of the P3 event-related potential (ERP) component to target sounds for the complex balancing compared to the standing on ground condition, and a further decrease in the dual-task compared to the single-task balancing condition. Further, we expected greater postural sway during slacklining while performing the concurrent auditory attention task. Twenty young, experienced slackliners performed an auditory oddball task, silently counting rare target tones presented in a series of frequently occurring standard tones. Results revealed similar P3 topographies and morphologies during both movement conditions. Contrary to our predictions we observed neither significantly reduced P3 amplitudes, nor significantly increased latencies during slacklining. Unexpectedly, we found greater postural sway during slacklining with no additional task compared to dual-tasking. Further, we found a significant correlation between the participant’s skill level and P3 latency, but not between skill level and P3 amplitude or postural sway. This pattern of results indicates an interference effect for less skilled individuals, whereas individuals with a high skill level may have shown a facilitation effect. Our study adds to the growing field of research demonstrating that ERPs obtained in uncontrolled, daily-life situations can provide meaningful results. We argue that the individual CMI effects on the P3 ERP reflects how demanding the balancing task is for untrained individuals, which draws on limited resources that are otherwise available for auditory attention processing. In future work, the analysis of concurrently recorded motion-sensor signals will help to identify the cognitive demands of motor tasks executed in natural, uncontrolled environments

    Does Fractional Anisotropy Predict Motor Imagery Neurofeedback Performance in Healthy Older Adults?

    Get PDF
    Motor imagery neurofeedback training has been proposed as a potential add-on therapy for motor impairment after stroke, but not everyone benefits from it. Previous work has used white matter integrity to predict motor imagery neurofeedback aptitude in healthy young adults. We set out to test this approach with motor imagery neurofeedback that is closer to that used for stroke rehabilitation and in a sample whose age is closer to that of typical stroke patients. Using shrinkage linear discriminant analysis with fractional anisotropy values in 48 white matter regions as predictors, we predicted whether each participant in a sample of 21 healthy older adults (48–77 years old) was a good or a bad performer with 84.8% accuracy. However, the regions used for prediction in our sample differed from those identified previously, and previously suggested regions did not yield significant prediction in our sample. Including demographic and cognitive variables which may correlate with motor imagery neurofeedback performance and white matter structure as candidate predictors revealed an association with age but also led to loss of statistical significance and somewhat poorer prediction accuracy (69.6%). Our results suggest cast doubt on the feasibility of predicting the benefit of motor imagery neurofeedback from fractional anisotropy. At the very least, such predictions should be based on data collected using the same paradigm and with subjects whose characteristics match those of the target case as closely as possible

    Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization

    Get PDF
    For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuo-motor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performance-enhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra- and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI

    Assessing focus through ear-EEG: a comparative study between conventional cap EEG and mobile in- and around-the-ear EEG systems

    Get PDF
    IntroductionAs our attention is becoming a commodity that an ever-increasing number of applications are competing for, investing in modern day tools and devices that can detect our mental states and protect them from outside interruptions holds great value. Mental fatigue and distractions are impacting our ability to focus and can cause workplace injuries. Electroencephalography (EEG) may reflect concentration, and if EEG equipment became wearable and inconspicuous, innovative brain-computer interfaces (BCI) could be developed to monitor mental load in daily life situations. The purpose of this study is to investigate the potential of EEG recorded inside and around the human ear to determine levels of attention and focus.MethodsIn this study, mobile and wireless ear-EEG were concurrently recorded with conventional EEG (cap) systems to collect data during tasks related to focus: an N-back task to assess working memory and a mental arithmetic task to assess cognitive workload. The power spectral density (PSD) of the EEG signal was analyzed to isolate consistent differences between mental load conditions and classify epochs using step-wise linear discriminant analysis (swLDA).Results and discussionResults revealed that spectral features differed statistically between levels of cognitive load for both tasks. Classification algorithms were tested on spectral features from twelve and two selected channels, for the cap and the ear-EEG. A two-channel ear-EEG model evaluated the performance of two dry in-ear electrodes specifically. Single-trial classification for both tasks revealed above chance-level accuracies for all subjects, with mean accuracies of: 96% (cap-EEG) and 95% (ear-EEG) for the twelve-channel models, 76% (cap-EEG) and 74% (in-ear-EEG) for the two-channel model for the N-back task; and 82% (cap-EEG) and 85% (ear-EEG) for the twelve-channel, 70% (cap-EEG) and 69% (in-ear-EEG) for the two-channel model for the arithmetic task. These results suggest that neural oscillations recorded with ear-EEG can be used to reliably differentiate between levels of cognitive workload and working memory, in particular when multi-channel recordings are available, and could, in the near future, be integrated into wearable devices

    Impaired evoked and resting-state brain oscillations in patients with liver cirrhosis as revealed by magnetoencephalography

    Get PDF
    AbstractA number of studies suggest that the clinical manifestation of neurological deficits in hepatic encephalopathy results from pathologically synchronized neuronal oscillations and altered oscillatory coupling. In the present study spontaneous and evoked oscillatory brain activities were analyzed jointly with established behavioral measures of altered visual oscillatory processing. Critical flicker and fusion frequencies (CFF, FUF) were measured in 25 patients diagnosed with liver cirrhosis and 30 healthy controls. Magnetoencephalography (MEG) data were collected at rest and during a visual task employing repetitive stimulation. Resting MEG and evoked fields were analyzed. CFF and FUF were found to be reduced in patients, providing behavioral evidence for deficits in visual oscillatory processing. These alterations were found to be related to resting brain activity in patients, namely that the lower the dominant MEG frequency at rest, the lower the CFF and FUF. An analysis of evoked fields at sensor level indicated that in comparison to normal controls, patients were not able to dynamically adapt to flickering visual stimulation. Evoked activity was also analyzed based on independent components (ICs) derived by independent component analysis. The similarity between the shape of each IC and an artificial sine function representing the stimulation frequency was tested via magnitude squared coherence. In controls, we observed a small number of components that correlated strongly with the sine function and a high number of ICs that did not correlate with the sine function. Interestingly, patient data were characterized by a high number of moderately correlating components. Taken together, these results indicate a fundamental divergence of the cerebral resonance activity in cirrhotic patients

    Evaluation of evoked potentials to dyadic tones after cochlear implantation

    Get PDF
    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of cochlear implant users (n = 12), which allowed detailed spatio-temporal evaluation of auditory evoked potentials by means of dipole source analysis. The present study examined hemispheric asymmetries of auditory evoked potentials to musical sounds in cochlear implant users to evaluate the effect of this type of implantation on neuronal activity. In particular, implant users were presented with two dyadic tonal intervals in an active oddball design and in a passive listening condition. Principally, the results show that independent component analysis is an efficient approach that enables the study of neurophysiological mechanisms of restored auditory function in cochlear implant users. Moreover, our data indicate altered hemispheric asymmetries for dyadic tone processing in implant users compared with listeners with normal hearing (n = 12). We conclude that the evaluation of auditory evoked potentials are of major relevance to understanding auditory cortex function after cochlear implantation and could be of substantial clinical value by indicating the maturation/reorganization of the auditory system after implantatio

    Effect of Speech Rate on Neural Tracking of Speech

    Get PDF
    Speech comprehension requires effort in demanding listening situations. Selective attention may be required for focusing on a specific talker in a multi-talker environment, may enhance effort by requiring additional cognitive resources, and is known to enhance the neural representation of the attended talker in the listener’s neural response. The aim of the study was to investigate the relation of listening effort, as quantified by subjective effort ratings and pupil dilation, and neural speech tracking during sentence recognition. Task demands were varied using sentences with varying levels of linguistic complexity and using two different speech rates in a picture-matching paradigm with 20 normal-hearing listeners. The participants’ task was to match the acoustically presented sentence with a picture presented before the acoustic stimulus. Afterwards they rated their perceived effort on a categorical effort scale. During each trial, pupil dilation (as an indicator of listening effort) and electroencephalogram (as an indicator of neural speech tracking) were recorded. Neither measure was significantly affected by linguistic complexity. However, speech rate showed a strong influence on subjectively rated effort, pupil dilation, and neural tracking. The neural tracking analysis revealed a shorter latency for faster sentences, which may reflect a neural adaptation to the rate of the input. No relation was found between neural tracking and listening effort, even though both measures were clearly influenced by speech rate. This is probably due to factors that influence both measures differently. Consequently, the amount of listening effort is not clearly represented in the neural tracking

    A Riemannian Modification of Artifact Subspace Reconstruction for EEG Artifact Handling

    Get PDF
    Artifact Subspace Reconstruction (ASR) is an adaptive method for the online or offline correction of artifacts comprising multichannel electroencephalography (EEG) recordings. It repeatedly computes a principal component analysis (PCA) on covariance matrices to detect artifacts based on their statistical properties in the component subspace. We adapted the existing ASR implementation by using Riemannian geometry for covariance matrix processing. EEG data that were recorded on smartphone in both outdoors and indoors conditions were used for evaluation (N = 27). A direct comparison between the original ASR and Riemannian ASR (rASR) was conducted for three performance measures: reduction of eye-blinks (sensitivity), improvement of visual-evoked potentials (VEPs) (specificity), and computation time (efficiency). Compared to ASR, our rASR algorithm performed favorably on all three measures. We conclude that rASR is suitable for the offline and online correction of multichannel EEG data acquired in laboratory and in field conditions
    • …
    corecore