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Introduction: As our attention is becoming a commodity that an ever-increasing
number of applications are competing for, investing in modern day tools and
devices that can detect our mental states and protect them from outside
interruptions holds great value. Mental fatigue and distractions are impacting
our ability to focus and can cause workplace injuries. Electroencephalography
(EEG) may reflect concentration, and if EEG equipment became wearable and
inconspicuous, innovative brain-computer interfaces (BCI) could be developed
to monitor mental load in daily life situations. The purpose of this study is to
investigate the potential of EEG recorded inside and around the human ear to
determine levels of attention and focus.

Methods: In this study, mobile and wireless ear-EEG were concurrently recorded
with conventional EEG (cap) systems to collect data during tasks related to focus:
an N-back task to assess working memory and a mental arithmetic task to assess
cognitive workload. The power spectral density (PSD) of the EEG signal was
analyzed to isolate consistent di�erences between mental load conditions and
classify epochs using step-wise linear discriminant analysis (swLDA).

Results and discussion: Results revealed that spectral features di�ered statistically
between levels of cognitive load for both tasks. Classification algorithms were
tested on spectral features from twelve and two selected channels, for the cap and
the ear-EEG. A two-channel ear-EEG model evaluated the performance of two
dry in-ear electrodes specifically. Single-trial classification for both tasks revealed
above chance-level accuracies for all subjects, withmean accuracies of: 96% (cap-
EEG) and 95% (ear-EEG) for the twelve-channel models, 76% (cap-EEG) and 74%
(in-ear-EEG) for the two-channel model for the N-back task; and 82% (cap-EEG)
and 85% (ear-EEG) for the twelve-channel, 70% (cap-EEG) and 69% (in-ear-EEG)
for the two-channel model for the arithmetic task. These results suggest that
neural oscillations recorded with ear-EEG can be used to reliably di�erentiate
between levels of cognitive workload and working memory, in particular when
multi-channel recordings are available, and could, in the near future, be integrated
into wearable devices.

KEYWORDS

EEG, brain computer interface, cEEGrid, attention, cognitive workload, working memory,

machine learning, ear-EEG

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.895094
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.895094&domain=pdf&date_stamp=2023-09-26
mailto:gcretot@critias.ca
https://doi.org/10.3389/fnins.2023.895094
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.895094/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Crétot-Richert et al. 10.3389/fnins.2023.895094

1. Introduction

The push to develop and democratize useful neurotechnology
tools and devices has been fueled by both the academic and
industrial sectors. Over the last twenty years, neuroscience as a
field of research has grown remarkably, generating major funding
and institutional support (Zivkovic, 2015). The private sector has
also increased investments and a handful of companies are now
considered leaders of innovation in the neurotech landscape, not
without growing ethical concerns and public scrutiny (Jarchum,
2019; Pfotenhauer et al., 2021; Wexler, 2021). In this context,
new applications are emerging for medical as well as consumer
interests and with these come new challenges, specifically, the
need for improved mobility (Debener et al., 2012; Gramann et al.,
2014). Transferring knowledge and technology from a laboratory
environment to real-world applications is both necessary and far
from trivial. Electroencephalography (EEG) is a proven technique
to record brain-electrical activity with the important advantage
of high temporal resolution. Non-invasive EEG uses electrodes
placed on the scalp to capture electrical potentials emitted by
large groups of neurons firing synchronously. EEG is a safe,
low-cost and low energy technology compared to other brain
imaging techniques, such as magnetic resonance imaging (MRI).
This has made EEG particularly appealing for brain-computer
interfaces (BCI). BCIs allow humans to control electronic devices,
such as computers or prosthetics (Hochberg et al., 2006), using
their thoughts. Earlier uses of such devices mainly focused on
communication and control for individuals suffering from different
forms of paralysis (Birbaumer et al., 1999; Wolpaw et al., 2002;
Vansteensel et al., 2016). However, other, more quotidian BCI
applications are emerging (Zander and Kothe, 2011). For instance,
BCI applications could monitor the mental state of a person in
view of workplace security (Müller et al., 2008; Aricò et al., 2016;
Mijović et al., 2017) and productivity, by preventing interruptions
that could be detrimental to task completion and quality (Jenkins
et al., 2016). If we could reliably decode when a person is focused
on a task, we could protect that state of “flow” by limiting
both visual and auditory distractions. This study intends to do
the former using non-invasive, discrete technology that will not
limit movement.

The robustness of BCI devices is improving thanks to
recent progress in signal processing, machine learning, electrode
technology and open-source software tools (Delorme and Makeig,
2004; Popescu et al., 2007; Blankertz et al., 2011; Gramfort et al.,
2014). However, several challenges still need to be addressed.
For instance, the recording equipment usually involves caps
or headbands, making it unsuitable in social settings while
the electrodes are usually wire-connected to bulky amplifiers
making the devices cumbersome and stationary. Thus, recent
EEG technological developments have been focusing on lighter
equipment with fewer electrodes and greater mobility, more
adapted for exploration of cognitive processes in realistic
environments and situations (Casson et al., 2010; Chi et al., 2011;
Debener et al., 2015; Goverdovsky et al., 2017). Wireless EEG
amplifiers are becoming available and their capability to record
reliable EEG data has been scientifically proven (Debener et al.,
2012; De Vos et al., 2014b; Lin et al., 2014).

Ear-EEG refers to the recording of brain-electrical activity from
electrodes placed in or near the ear, as opposed to traditional
scalp EEG, for which electrodes are commonly placed in concentric
circles on caps which cover the entire scalp. The main appeal
of ear-EEG for the proposed mental focus application is that it
can be inconspicuous to wear in public settings. Also, the area
around the ear and inside the ear canal is usually hairless, an
advantage for electrode-skin contact with or without conductive
gel. Furthermore, the irregular geometry of the ear canal would
allow fitted earpieces to keep the device firmly in place, thereby
potentially reducing artifacts during natural movement. The first
proof-of-concept for ear-EEG was published in 2011 (Looney et al.,
2011) and since then, multiple research groups have demonstrated
its potential, with electrodes placed around the ear, in the concha
and inside the ear canal (Debener et al., 2012; Kidmose et al., 2012;
Bleichner et al., 2015). Ear-EEG has already proven its capacity to
reliably record auditory attention (Bleichner et al., 2016; Mirkovic
et al., 2016), event-related potential (ERP) components such as
the P300 (Debener et al., 2015; Pacharra et al., 2017) and factors
like fatigue and sleep quality (Looney et al., 2014; Mikkelsen et al.,
2018; Sterr et al., 2018). Some studies have considered the potential
of ear-EEG to record alpha frequencies (rhythmical activation of
the brain oscillating between 8 and 12Hz) (Debener et al., 2015;
Mikkelsen et al., 2015), but ear-EEG research has generally focused
on the analysis of time-locked events. ERPs are induced potentials
that are seen in response to sensory, cognitive or motor events.
They combine positive and negative amplitude peaks occurring
over specific time windows after stimulus onset, some are large
in amplitude and identifiable even at the single trial level (e.g.,
P300 or N100). Another type of brain activity, which has received
perhaps less attention in ear-EEG research, is continuous EEG and
its oscillatory behaviors (Buzsaki, 2011). Neural oscillations are
defined as power spectral densities over specific frequency ranges,
delta (1–3Hz), theta (4–7Hz), alpha (8–12Hz), beta (13–30Hz)
and gamma (> 30Hz). They have been found to reflect mental
states such as memory (Klimesch et al., 1996), attention (Foxe and
Snyder, 2011), engagement (Berka et al., 2007) and higher thinking
and reasoning processes (Palaniappan, 2006).

This study aims to investigate the EEG power spectrum
extracted from signals recorded in and around the ear and to
evaluate the potential to use these signals to monitor mental states.
We compared conventional cap-EEG (EEG recorded over the
entire head) to new devices developed for mobile ear-EEG to assess
how the signals’ amplitudes and power spectrum differ from one
recording system to the other. The goal is to discriminate between
states of high and of low focus using classification algorithms
(Müller et al., 2008).

In this study, focus is associated to two main concepts: working
memory and cognitive workload as seen in (Klimesch et al., 1998;
Oken et al., 2006; Fougnie, 2008). Working memory refers to
the process of using short-term memory to make immediate and
conscious decisions regarding a perceptual or linguistic task. A
popular paradigm used to investigate working memory is the N-
back task as presented in Brouwer et al. (2012). Different working
memory loads can be studied by lengthening or shortening the
duration of a sequence of numbers or letters a subject is asked to
remember. Working memory load is known to inversely correlate
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with alpha power (Owen et al., 2005; Berka et al., 2007; Regenbogen
et al., 2012). Additionally, brain oscillations from theta to gamma
have been found to vary according to the working memory levels
(Herrmann et al., 2004; Pesonen et al., 2007). The N-back task
elicits a P300 ERP, a well-known ERP component, which varies
in amplitude according to task relevance and working memory
(Watter et al., 2001). Cognitive workload relates to the difficulty and
effort required to perform a task. It has strongly been associated
with changes in alpha power according to the level of difficulty
of the task (Anderson and Sijercic, 1996; Keil et al., 2006; Foxe
and Snyder, 2011; Magosso et al., 2019). It has been reported
that other frequency bands, such as delta (Harmony et al., 1996),
theta (Scheeringa et al., 2008), and gamma (Shibata et al., 1999;
Landau et al., 2007) also carry information relative to cognitive
workload. To assess the ear-EEG’s capability to detect changes in
power spectral density (PSD) relevant to cognitive workload levels,
an arithmetic task was replicated from established high-density
cap-EEG studies (Yu et al., 2009; Rebsamen et al., 2011).

2. Materials and methods

2.1. Subjects

Fifteen subjects (nine females, six males, mean age 27.1
years, 14 right-handed) were initially recruited for this study to
participate in both tasks although some participants only took
part in one of the two. Each gave written informed consent
and none reported any neurological or psychiatric disorders.
Recruitment and procedures for this study were performed in
accordance with the Ethics Committee of Oldenburg University.
Subjects were remunerated at minimum wage to take part in
the study.

2.2. Test paradigm

Two tasks were chosen to study different characteristics and
common features of concentration: an N-back task to study
working memory and an arithmetic task to study cognitive
workload. For both tasks, subjects were seated in front of a screen
where visual stimuli, letters and numbers were displayed using the
Presentation R© software (Version 18.0, Neurobehavioral Systems,
Inc., Berkeley, CA, www.neurobs.com), which also generated event
markers. The stimuli were displayed in a black font on a light
gray background. For each task, subjects were first given a tutorial
round to ensure the instructions were understood. Task order was
balanced across subjects.

The N-back task was conducted according to the following
study’s procedure (Brouwer et al., 2012). Subjects memorized a
series of consonants and for each new letter that appeared, they
had to decide if it was a target or a non-target letter using a two-
button handheld box. Button assignment for target and non-target,
left or right, was balanced across subjects. The attributes of the
target letter depended on the level of difficulty of the task, of which
there were three. The first level or 0-back, required no working
memory effort as the subjects did not have to pay attention to the
sequence of letters. They only had to identify the letter ’X’ as a

target and any other letter as a non-target. For the 1-back, subjects
needed to remember the past letter shown. If the new stimulus
was the same as the previous one, one back, then that letter was
a target. And finally, for the 2-back, the most demanding level in
terms of working memory, the target letters were those shown two
letters before, requiring the subjects to constantly update the last
two letters in their head and compare it with the new one. The
letters were displayed on the screen for 500ms with a 2000ms inter-
stimulus interval during which a fixation cross was displayed at the
center of the screen.

The duration of the N-back task was about 45 min. It was
divided into four sessions of six two-minute blocks each. The
three levels of difficulty were repeated twice during one session.
Forty-eight letters were shown during each block, 33% of which
were targets. The levels were given in a pseudorandom order,
different for each subject. Each level was presented once before
being repeated and the same level was never given twice in a row.
Between each block, the subjects were shown their success rate on
the screen followed by a fixation cross for 20 seconds. Subjects
initiated the next block and between sessions, the experimenters
would briefly interact with the subjects before initiating the next
session.

The arithmetic task consisted of sums and inequalities, a
procedure adapted from Rebsamen et al. (2011). Subjects were
shown an addition, asked to calculate it and keep the result in mind.
A new number was then displayed which could be greater, equal to
or lower than the result, each with a 33% probability. Subjects were
asked to compare their answer with this number, using a handheld
3-button box. The buttons were marked with the signs “<”, “=”
and “>”. There was no time limit to solve a problem. The task
featured five levels of difficulty; level 1: addition of two single-digit
numbers, level 2: addition of a single and a double-digit number,
level 3: addition of two double-digit numbers, level 4: one double
and one triple-digit number and finally, level 5: an addition between
two triple-digit numbers.

The arithmetic task took 35 min to complete. It was divided
into two sessions, each consisting of fifteen one-minute blocks and
the five levels of difficulty were repeated three times. During a block,
only additions of the same level were featured. Subjects completed
as many additions as they could in the one-minute time frame. The
levels of difficulty were given in a pseudorandom order, different for
each subject. Each level was presented once before being repeated,
and the same level was never given twice in a row. Between each
block, subjects were shown their success rate on the screen. A 20-s
rest period followed each block, during which a fixation cross was
displayed on the screen. Between sessions, experimenters would
interact with the subjects until they felt ready to initiate the next
session.

2.3. Data acquisition

EEG data was recorded using two recording systems
concurrently: an ear-EEG mobile recording system and a
high-density cap-EEG stationary recording system as described
in Bleichner et al. (2016). The ear-EEG equipment consisted of
a SMARTING 24-channel wireless EEG amplifier (mBrainTrain,
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Belgrade, Serbia) with a modified connector to two cEEGrids–
concealed, around the ear self-adhesive arrays of 10 flex-printed
Ag/AgCl electrodes (Debener et al., 2015) - and two TIPtrodeTM -
in-ear foam inserts wrapped in gold foil (Bauch and Olsen, 1990)
as seen in Figure 1. Ear-EEG channels, cEEGrids and TIPtrodesTM,
were referenced to a channel on the cEEGrid placed around the
subject’s right ear, electrode R4b, while electrode R4a served as
the analog ground. Channels from the right ear, cEEGrids and
TIPtrodes (excluding R4a and R4b), were re-referenced during
signal pre-processing to channel L4b ensuring that each ear-EEG
channel was referenced to a channel on the contralateral ear. Data
from this system was transmitted wirelessly via Bluetooth to the
recording computer.

The cap-EEG system consisted of a research-grade EEG
amplifier (Brainamp, Brainproducts GmbH,Herrsching, Germany)
connected to a 96-channel Ag/AgCl EEG cap (EasyCap, Hersching,
Germany) with equidistant electrodes. Twelve electrodes were not
connected, that is, six over each ear, as they would have overlapped
with the cEEGrids placed underneath the cap. This gave a total of
84 effective channels. The ground was placed at a central fronto-
polar electrode and the reference electrode was placed at the nose-
tip. This system had two dedicated eye electrodes placed under
each of the participant’s eyes (E29 and E30). The cap-EEG data
was transmitted through fiber optic cable to the same recording
computer as the one used for the ear-EEG. Both recording systems’
data streams were recorded at a 500Hz sampling rate along with a
third data stream consisting of the event markers generated by the
Presentation R© software (Neurobehavioral Systems, Inc., Berkeley,
CA, www.neurobs.com). As shown in Figure 2, they were combined
into a single file, xdf format, using the Lab Recorder program from
the open-source Lab Streaming Layer (LSL) data acquisition and
synchronization software (Kothe, 2014).

Prior to recording, subjects were asked to wash and dry their
hair. They were also given cotton swabs to clean earwax from the
outer ear canal. Alcohol wipes and abrasive gel were used to prep
the skin around the ear. Electrolytic gel (Abralyt HiCl, Easycap
GmbH, Germany) was applied to the cEEGrid electrodes, which
were then placed around the subjects’ ears. Electrode impedance
was adjusted to under 20 k� for each ear electrode. Next, the subject
was fitted with the electrode head cap. The six electrode rings over
each ear were taped off, all others were covered with electrolytic
gel and individual electrode impedance was set to under 5 k�
for all cap electrodes. The subjects were seated facing a screen at
a distance of 1.3 meters, in a sound-proof room. Lastly, the two
dry TIPtrodesTM were rolled tight and inserted into the ear canal
where they were given time to expand and come in close contact
with the skin. Metallic clamps were attached to the gold foil of the
TIPtrodesTM and connected to a SMARTING adaptor along with
the cEEGrids leads. The SMARTING amplifier was secured to the
shoulder of the subject.

2.4. Data analysis

Data was analyzed offline using MATLAB (MathWorks Inc.,
Natick, USA) and EEGLAB, version 13.6.5b (Delorme and Makeig,

2004). Fourteen subjects took part in the N-back task and all
were included in this study. Fifteen subjects were recruited for the
arithmetic task, but five of these were not considered because of a
stimuli marker experimental error that failed to associate EEG data
blocks to their level of difficulty. EEG data was band-pass filtered
between 0.5Hz and 100Hz and resampled at 256Hz. The data
sets were then epoched for each task. For the N-back task, epochs
started 500ms before a new stimulus was presented and ended
1500ms after. Epochs were baseline corrected at 200ms before
stimulus presentation. This resulted in 48 epochs per block, 384 per
level and 1,152 per subject. For the arithmetic task, epochs were
not linked to stimuli presentation since the number of problems
and the time lapse between problems varied across levels and
subjects. Therefore, data from the arithmetic task was epoched
at regular intervals. Regularly-spaced dummy event markers were
added during pre-processing and used to epoch the EEG data in
2-second windows with a one-second overlap between windows.
This produced 58 epochs per block, 348 epochs per level and 1,740
epochs per subject). Epochs from both tasks were inspected visually
to select artefact-dominated trials and remove them. Less than 5%
of trials were removed for each individual subject data set. An
Independent Component Analysis (ICA) was then performed on
all available channels for each recording equipment (84 for the
cap-EEG data and 20 for the ear-EEG). The eye blink component
or components were removed using topographical distribution
when available and time courses of the independent component
activation for both systems. Between one and three components
was removed per subject per task as the eye blink component(s) for
the cap-EEG data while for the ear-EEG data, components removed
varied between one and two components per subject per task, with
an exception of one participant for which no component were
removed. This participant’s ear-EEG data exhibited in fact very few
blink related activity. For both the cap and the ear EEG data, the
blink removal procedure was validated by inspecting superimposed
single trial time courses before and after component removal using
EEGLAB tools to ensure that the blinks had been removed from
the signal without affecting other dynamics of the continuous EEG
signal. Other components identified as noise, notably an important
sinusoidal component which affected some cap-EEG electrodes
located at the back of the ears and both in-ear-EEG electrodes,
were removed using the ICAmethod as well. This noise might have
been related to interference between the two recording systems and
equipment.

Data sets were then processed for a spectral-domain analysis.
The Power Spectral Density (PSD) was calculated for each epoch
using a periodogram power spectral density estimate under a
Hanning window. The results were interpreted for a frequency
range from 1 to 100Hz in 1Hz interval bins and as band
power for seven neural oscillation groups: delta (1–3Hz), theta
(4–7Hz), alpha (8–12Hz), a low beta band (13–19Hz) and a
high beta band (20–30Hz), a low gamma band (30–50Hz) and
a high gamma band (50–100Hz). This splitting of the last two
frequency bands was based on the results of an analysis, not
shown here, which came to a compromise between showcasing
significant differences in PSD within the bands while limiting the
amount of splits in the bands when the differences were not as
statistically significant.
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FIGURE 1

Ear-EEG recording devices: (a, b) show the cEEGrid; (c) shows the TIPtrodesTM.

FIGURE 2

EEG devices setup and recording systems.

A time-domain analysis was performed for the N-back task, for
which the data was resampled at 100Hz and a low-pass filter was
applied at 20Hz to analyze the ERP response from 0 to 1,000ms.

For both these analyses, spectral and temporal, all channels
were studied and two electrodes from each recording system were
selected to highlight grand average and distribution results: a
centrally-located electrode, Pz for cap-EEG, L3 for ear-EEG; and
another electrode which was relevant to compare in-ear EEG to
cap-EEG specifically. These special electrodes were: one of the in-
ear channels, E1 and E2, the two TIPtrodesTM electrodes used
dry inside the ear canal; and the cap-EEG channel chosen for
comparison consisted of an occipital channel, O1 or O2, chosen
after multiple considerations of other electrodes (midline, central
and frontal pairs). The analysis (and later classification) results were

found to be best at these locations which was to be anticipated
considering the visual nature of both tasks’ experimental stimuli.
Only one in-ear channel and one occipital channel were shown
in the figures since their results looked similar enough that no
additional information could be gathered from representing both.

A spatial-domain analysis was performed using all 84 cap-
EEG channels available. Topographical distributions for the above-
mentioned seven frequency band powers was mapped for different
mental load conditions. The difference between the most and
least demanding conditions and the relative significance of these
differences were also represented spatially.

Lastly, statistical analyses of the differences between mental
load conditions was done through permutation testing (Cohen,
2014) for twelve electrodes from both recording systems which
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covered the recorded channels as well as possible. The cap-
EEG’s channels provided a good spatial distribution over the head
and were based on De Vos et al. (2014b). Since the cap-EEG
electrode layout used in this study differed from the cited article’s
layout, a correspondence was established between the 10–20 system
electrode labels and the 96 equidistant electrode cap labels using
the shortest Euclidean distances between electrode positions. The
cap-EEG electrodes chosen for this study are: E1-Cz, E2-Fz, E5-
Pz, E8-Fpz, E12-O2, E13-O1, E45-F4, E38-C4, E49-P4, E53-P3,
E41-C3, E57-F3. The ear-EEG’s channels which were found to be
representative of the entire electrode set and overlapped with the
results of prior authors (Bleichner et al., 2016). They are: L1, L2,
L3, L6, L7, R1, R2, R3, R6, R7 for the cEEGrid plus the right and
left in-ear TIPtrodeTM electrodes referred to as E1 and E2. This
non-parametric test was chosen because PSD distributions from
all subjects were largely non-uniform. Additionally, the statistical
results of a permutation test, a z-score, is a signed indicator which
gives information on the strength of the statistical test but also on
the sign of the difference between conditions. It was shown that
the sign of the differences - which condition yields a higher PSD
or amplitude and which is lesser - changes between mental load
conditions according to individual subject, frequency, time and
spatial location. Each permutation test was done 5,000 times to
yield z-scores for each comparison and significance threshold was
placed at a p-value of 0.01, equivalent to a z-score of ± 2.326. The
results of these comparisons are featured in the analysis of the EEG
data for both tasks. Statistical heatmaps were created from them
for both spectral and temporal domain information. To account for
the important number of tests performed to produce each heatmap
(over a thousand), multiple comparison correction was applied
to the statistical values using the False Discovery Rate (FDR)
method (Benjamini and Hochberg, 1995; Yekutieli and Benjamini,
1999).

2.5. Feature extraction and classification

Classification of the data epochs was performed on a subset of
the total number of channels available (twelve and two) for each
recording system to be consistent across both recording systems
and more representative of concealed ear-EEG device constraints.
Narrowing the number of channels considered was also important
for dimensionality concerns associated with machine learning
algorithms. Multiple models were generated using one classifier
type, a step-wise linear discriminant analysis (swLDA), each model
was defined by the features of the EEG signal it used. Sets of
features were generated in order to compare their performance
and assess the influence of factors such as the number of channels
available, the PSD resolution, the cut-off frequency and the domain
of the features (spectral vs temporal). The same channels as for the
statistical heatmaps were used to create the twelve-channel feature
sets for both recording equipment and both task. The channels used
to compare in-ear to cap-EEG specifically were used to generate the
two-channel features sets: E1 and E2 for the ear-EEG, O1 and O2
for the cap-EEG.

PSD features for each channel were extracted from the
periodogram of the epochs generated for each task and focus

level. The main PSD feature set considered was composed of PSD
estimates from 1 to 100Hz with a 1Hz resolution also referred to
as the 1Hz frequency bin model. It generated 100 initial features
per channel. Each model was trained for both cap and ear-EEG, for
twelve channels (1200 initial features) and for two channels (200
initial features). The PSD values for each selected channel were
concatenated.

To study the influence of PSD resolution on classifier
performance, models with different PSD resolution or bin sizes
were considered, two additional frequency bin models and
3 frequency band models. The highest resolution model was
composed of 0.5Hz bins, yielding 200 initial features per channels.
A 5Hz or less PSD model was evaluated, it was composed of a
delta (1-3Hz), theta (4-7Hz) and alpha (8-12Hz) neural oscillation
bands since their frequency ranges were equal to or lower than
5Hz; the remaining interval (13 to 100Hz) was divided into 5Hz-
frequency bins resulting in 21 features per channel. The twelve-
band model (or 10Hz model) started the same with frequency
bands delta to alpha, it split the beta frequency range in two (much
like the seven frequency band model described earlier) for a low
beta (13 to 19Hz) and a high beta (20 to 30Hz), the gamma
band was then equally split in 10Hz frequency bins from 30 to
100Hz for a total of 12 features (or bands) per channel. Refer
to the previous section for the seven-band model. The five-band
model, the lowest resolution model, consisted simply of the five
main neural oscillations: delta, theta, alpha, beta (13-30Hz) and
gamma (30Hz to cut-off frequency). These PSD feature sets were
compared to the 1Hz frequency bins model and to each other. The
last PSD featuremodel were created to study the influence of cut-off
frequency. The gamma band cut-off frequency appears inconsistent
in the EEG literature: Buzsaki (2011) uses both 80Hz and 100Hz as
a gamma band cut-off at multiple occasions in his book on brain
oscillations. Other researchers suggest that gamma band activity
could extend to 200Hz (Uhlhaas et al., 2011), while representations
of EEG grand average PSD often stop at 45Hz. Hence, feature sets
were extracted with a 100, 80, and 45Hz cut-off frequency.

Because the N-back task had temporal information from the
ERP response available as well as PSDs, additional models were
considered for this task inspired by the following study (Brouwer
et al., 2012). One model consisted of temporal features from the
time-locked epochs: the amplitude of the signal from 0 to 1,000ms
taken every 10ms, (100 initial features per channel). Lastly, a mixed
set of features, dubbed the "fusion" features by Brouwer et al.,
incorporated the 100 temporal features and 1Hz interval PSD
features for a total of 200 initial features per channel.

The choice of a swLDA classification algorithm was made
since it greatly reduced the number of features considered,
thereby reducing the risk of over-fitting (Blankertz et al., 2011),
important to address considering the high number of features some
models have compared to the number of trials. This technique
has proven very powerful for EEG single-trial classification
(Krusienski et al., 2006). The swLDA was implemented according
to specifications from De Vos et al. (2014b). Feature selection was
done sequentially and features were only included if they improved
class discrimination statistically (pin < 0.1). For each new feature
included, the procedure re-analyzed the current feature pool and
removed any feature that had become redundant (pout > 0.15).
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All classifier models in this study were binary. For the
arithmetic task, conditions were defined as high and low cognitive
workload state. Data from levels 1 and 2 were combined to form
the low cognitive workload condition, and levels 4 and 5 were
combined to form the high cognitive workload condition. Level
3 was left out to maintain a balanced set of trials per class. This
produced a set of over 1250 samples across 2 classes for low vs. high
cognitive workload conditions. For the N-back data, high and low
working memory conditions were associated with the 2-back and
0-back. This data set held over 700 samples over 2 classes for the
high vs. low condition.

The performance of each model was obtained using a ten-fold
cross validation test. Before training, the models were divided into
10 sub-groups. Each trial was given a number from 1 to 10, ensuring
the same partition of trials or samples was used to evaluate the
performance of all the feature sets. The classifiers were trained on
all the subgroups except for one, the testing set, which would be
used to evaluate the classification accuracy of the trained model.
The model then classifies each trial from the testing set using the
knowledge it gathered during the training phase. Classification
accuracy corresponds to the percentage of trials in the testing
set correctly classified as low or high focus by the model. The
process was repeated so that each subgroup served as the testing set,
yielding ten accuracy results for each model and subject. Reported
subject accuracy was the average of these 10 results.

The threshold for above chance-level classification accuracy of
single subject data was set using the method in Combrisson and
Jerbi (2015), which considers sample size to determine chance-
level. Seeing as there were more than 500 samples for each task,
in the high vs. low and pairwise binary classification, and that these
were 2-class determinations, the chance-level was set at 57% (for a
p-value of 0.001).

To compare statistical performance of cap and ear-EEG
classifiers and assess the influence of different feature extraction
and selection methods, a paired t-test was used on the performance
metrics. Each model had 10 accuracy results per subject, a p-value
of 0.001 was considered significant, some average p-values were
reported when relevant.

3. Results

3.1. EEG data

3.1.1. N-back task
The N-back task’s data epochs were locked to the presentation

of a stimuli. This made it possible to study PSD and ERP amplitudes
to assess the fluctuations in EEG activity between low and high
working memory conditions. The difference between these states
was assessed on group data from all subjects and on an individual
subject basis to create statistical heatmaps.

Figure 3 shows the grand average PSD for two cap and two
ear-EEG channels for the three levels of the N-back task on a
logarithmic scale. The grand average PSD shows three distinct
conditions visible with both recording systems, ear and cap,
particularly around the alpha peak (8–12Hz) for all four channels
represented. The amplitudes of the alpha peaks are higher for

the cap-EEG channels, Pz and O1, compared to the ear-EEG
channels. Conditions with higher working memory load exhibited
visibly weaker alpha peaks over both recording systems. It also
appears that this order, with the least demanding condition on top,
the moderate condition in the middle and the more demanding
condition at the bottom seems to be the same over the theta
range (4–7Hz) and the lower part of the beta range (below
20Hz). This holds true for virtually all channels available over both
recording systems with a few exceptions where PSD levels were less
distinctive. Around 20Hz and to the end of the frequency range
considered, the order of the plot lines gets inverted with the more
demanding condition now generating higher PSD values over the
high beta range (from 20 to 30Hz) and gamma range (30Hz and
above).

In Figure 4, the normalized PSD for different neural oscillations
for all subjects is represented with boxplots. The range is divided
into seven frequency bands: delta, theta, alpha, two beta bands,
low beta (beta 1 for 20-30Hz) and high beta (beta 2 for 20–30Hz)
and two gamma bands, low gamma (gamma 1 30-50Hz) and high
gamma (gamma 2 50–100Hz). The beta band was split to coincide
with the shift seen in the grand averages of Figure 3. The gamma
band mid-point between low and high was chosen after it was
determined that more splits or different frequency splits than 50Hz
did not have a significant impact on representation or statistical
results. In order to visualize power bands from all the frequency
ranges in one figure, band power values were normalized at the
individual subject level (divided by the 90th percentile for this
band power). Normalized values from all subjects were then pooled
together and plotted. The data sets have a substantial amount of
outliers and many with extreme values. To reduce the number
of outliers and improve readability, the interquartile range used
for the whiskers of the boxplots is extended to 2.5. Outliers with
extreme values are compressed if they are above 2.5 normalized
PSD. A dotted line is placed at this upper limit and outlier markers
are plotted evenly in the region above it. Z-scores obtained from
permutation testing over trials from all subjects are given over each
boxplot. The higher the absolute value of the z-score, the more
significant the difference between the two mental load conditions.
The sign of the z-score indicates the direction of this difference
(i.e. positive values indicate the more demanding condition, the 2-
back in this case, yields higher PSD values than the less demanding
condition, the 0-back).

From Figure 4, it can be noted that most of the distributions
are different and highly significantly from their z-scores, for
all channels considered. Though the boxplots themselves can
sometimes be harder to interpret, particularly with median values,
the same trends as with the grand averages (Figure 3) can still
be observed over both recording systems. Box outlines, whisker
limits and outlier values hold noticeable differentiating information
between conditions. That is a tendency for smaller PSD values as
mental load increases for the lower frequency bands (under 30Hz).
All channels represented had negative Z-scores for the delta, alpha
and beta 1 bands. The alpha bands are the most distinguishable,
yielding the highest negative z-scores for every channel considered.
While from the beta 2 band onward the PSD is now higher with
increasing mental load. All gamma bands z-scores are negative
and highly significant and although beta 2’s z-score is positive for
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FIGURE 3

Grand average PSD for the N-back task for selected cap and ear-EEG channels (N = 14).

FIGURE 4

Boxplot of PSD for seven frequency bands for the N-back task for selected cap and ear-EEG channels (N = 14; *z-score>±2.3262 eq. p = 0.01,
**z-score>±3.0902 eq. p = 0.001).

the cap channels and negative for the ear channels, only the most
demanding condition distributions have outliers, with extreme
values, for channels over both recording systems for these three
highest power bands.

Spatial distribution of the PSD over the seven frequency
bands can be observed in Figure 5, in which the first two

rows show grand average EEG activity for the 0-back and 2-
back condition. The last row represents the difference between
both conditions by mapping the z-scores obtained through
permutation testing for each frequency band at each electrode
location. Blue regions represent a decrease in EEG activity with
increasing mental load for this neural oscillation; red regions,
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FIGURE 5

Topographical maps of PSD for seven frequency bands for the N-back task (N = 14, first two rows are grand averages, the last is the statistical results
of permutation testing between both conditions–positive z-scores (red) indicate an increase in PSD from the 0-back to the 2-back, negative
z-scores (blue) indicate a decrease).

an increase. The intensity of the color conveys the degree of
statistical significance.

The grand average maps for each condition at frequency ranges
under 20Hz - delta to beta 1–concentrate high PSD values over
the center of the map with a more posterior focus for the alpha
band and the beta 1. Higher frequency range maps show that
PSD values are the highest over the ocular regions, due mostly
to electro-oculography (EOG) and other muscle-related artefacts.
This activity was highlighted by the presence of two dedicated eye
electrodes, placed under each eye. Other regions of interest for
these higher frequency bands can be seen over the occipital region,
increasing seemingly with each neural oscillation range from beta 2
to gamma 2.

When comparing the activity between both working memory
conditions, the difference maps show a decrease in activity
(represented in blue) for the lower frequency bands. The alpha
and beta 1 difference maps are predominantly blue over the entire
scalp, while the difference map from the theta band exhibits a
decrease in activity in the occipital region that was not visible in
the previous maps. Regarding the 3 higher frequency bands, beta 2
(20-30Hz), gamma 1 (30-50Hz) and gamma 2 (50-100Hz), although
PSD values were higher over the ocular regions, the differences in
PSD distributions across the scalp point to an increase (represented
in red) in activity between conditions distributed over multiple
regions spanning the entire scalp. Interestingly, regions of most
significant statistical difference are concentrated at the back and to
the sides of the topographical maps, indicating that the differences
between working memory conditions seem to emerge from an
increase in EEG activity distributed over the parietal and occipital
lobe and not driven by artefacts. These results are in line with our
previous findings for the different neural oscillations.

Figure 6 shows the differences at an individual subject level. The
heatmaps are the result of multiple statistical analyses conducted
for each subject and later summed together to highlight which
PSD regions and which channels are statistically significant when

comparing high and low working memory conditions. At the
individual level, subjects exhibited strong differences throughout
the power spectrum, which were assessed through permutation
testing for each 1Hz interval bin for individual cap and ear
channels. For each subject, every bin was tested and given
a binary result, 1 if the difference in PSD was significant
at an equivalent p-value of 0.01, 0 if it was not significant.
Converting the signed z-score to their p-values allowed positive
and negative differences to be considered significant instead of
canceling their effect when taken in a grand average (Figure 3)
or a distribution (Figure 4) approach. Indeed some subjects had
inverted effects when considering the same frequency bin and
channel. Additionally and to account for the considerable amount
of tests per subject (100 bins for 12 channels), p-value threshold
were adjusted for each subject using the FDR method. Corrected
significance threshold actually varied between 0.001 and 0.009 for
the cap-EEG channels and from 0.00006 to 0.008 for the ear-EEG
channels. Each rectangle of the statistical heatmap represents the
sum of subjects for which this PSD bin was significantly different at
this channel. Twelve channels were represented for each recording
system, the same as were later used for classification. The alpha
peak range, centered around 10Hz, is visibly lighter across all
channels considered, for both recording systems. Some other areas
are more significant for the cap-EEG channels: the delta range (1–
3Hz) and the frequency bins right after the alpha peak where we
can distinguish a slow gradient of color throughout the low beta
range from 12 to 20Hz ending with a darker, less differentiated EEG
activity between 20 and 30Hz. For the gamma range, beyond 30Hz,
both recording systems indicate that a high number of individual
subjects exhibit significant differences over this frequency range.

Figure 7 shows the grand average ERP waveforms generated by
the N-back task for the same electrodes as the PSD figures. Cap-
EEG channels showed peaks at much higher amplitudes than ear-
EEG channels. Given that the ear-EEG ERP is considerably noisier,
a 4-point moving average was applied to smooth the data. For the
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FIGURE 6

Heatmaps show the sum of subjects (from 0 to 14) for which PSD values are significantly di�erent between working memory condition (0-back vs
2-back). Significance threshold was placed at the subject level at a FDR corrected z-score of ±2.3262 (equivalent to p = 0.01).

cap-EEG channels, a distinct P300 response started around 250ms
and peaked at around 450-500ms after stimulus onset. The P300
peak was visibly higher for lower working memory conditions and
return to baseline was faster. The ear-EEG waveforms are not as
clear. The around-the-ear electrode L3 highlights a visible P300
response starting a bit earlier than for the cap-EEG channels but
the differences between conditions are not clear at the P300 peak
level, return to baseline seems to be faster again for lower working
memory condition. The in-ear data grand average ERP shows a
clear P100 response, present in all the considered channels, but
the P300 response is not visible. This difference between recording
equipment, between the cap-EEG data’s recognizable P300 peak
and the ear-EEG data’s much less discernible ERP waveforms is
supported by the statistical heatmap for the temporal data analysis,
Figure 8. This heatmap was obtained using the same method as for
Figure 6, comparing at the individual subject level, PSD for low
(0-back) and high working memory (2-back) conditions at each
time-point (10ms intervals) and for each of the twelve channel
subsets. Significance threshold at the subject level was place at an
equivalent of p = 0.01 and corrected for multiple comparisons using
the FDRmethod, actual p-value thresholds varied between 0.002 to
0.005 for the cap-EEG channels and from 0.000003 to 0.0014 for the
ear-EEG channels. Each rectangle of the heatmaps represents the
sum of subjects for which this amplitude is significantly different
at this channel. The cap-EEG channels showed very bright regions
around 500ms, corresponding to the peak of the P300 response
seen in the grand average waveforms. However, the ear-EEG
channels, particularly the in-ear channels (E1 and E2) don’t show

asmuch shared differences in the temporal domain. Some outer-ear
channels were still able to detect significant changes in amplitude in
the range of the P300 response for a majority of subjects.

3.1.2. Arithmetic task
For this task, the PSD was taken from 2-second epochs taken at

regular interval, no time domain analysis was performed. To assess
the fluctuations in EEG activity between a high and a low cognitive
workload, subjects were asked to solve arithmetic problems with
varying degrees of difficulty. The differences were assessed on group
data from ten subjects and an individual subject basis to create the
heatmaps.

Figure 9 shows the grand average PSD for the arithmetic task.
For this task also the different mental load conditions can be
differentiated on these plots for both recording systems. The alpha
peak was harder to differentiate between low and high workload
conditions for the cap-EEG than for the ear-EEG. For this task
and for both recording equipment, the more demanding condition
appear to generate higher PSD than the less demanding one, over
the entire frequency range considered. The grand average ear-EEG
PSD difference is quite striking from the alpha range forward. The
gamma band PSD for the cap-EEG data was also distinctly higher
for the more demanding workload condition.

The boxplots of Figure 10 represent the distribution of PSD
for all subjects for the seven frequency bands. The data was
analyzed in the same manner as for the N-back task, the frequency
bands were the same, the normalization procedure and statistical
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FIGURE 7

Grand average ERP for the N-back task for selected cap and ear-EEG channels (N = 14).

approach were also the same (refer to Figure 6). The boxplots
confirm and highlight that themore demanding cognitive workload
condition’s PSD is statistically higher than the less demanding
condition for all frequency bands and for all channels considered
from both recording equipment, indeed all z-scores obtained
from permutation testing are highly significant and they are all
positive. Despite the normalization of the data and the increase
in the percentage of distribution included within the whiskers
of the plots, there is still a large number of outliers for this
task, like for the one before. For this task however, extreme
value outliers are only found for the more demanding condition,
and the higher the frequency bands, the more this difference in
outlier presence differs between the conditions. From beta 2 to the
gamma ranges, the distributions for the low workload condition
show no outliers for all channels considered over both recording
systems while the high workload condition distributions exhibit
many and always with some extreme values. These non-uniform
distributions could suggest that the pooled data from all subjects
might need better processing methods to harmonize results and
lower variance.

The topographical mapping of the seven frequency bands
is shown in Figure 11. The maps show the grand average PSD
at each channel location for both conditions and the difference
between conditions by way of projecting the results of a statistical
analysis at each electrode location (cf to Figure 5 for more details
as the procedure is the same). The grand average maps are not
so informative, there seems to be a strong unilateral posterior
component present in all frequency ranges and strong activation
over the ocular region as well, due to EOG artefacts, for the
beta and gamma bands. Other important regions and differences
between states are not easily identifiable in these rows but they
come into focus with the difference maps. Mostly the difference
maps show an increase in EEG activity (seen in red) throughout
the frequency range considered. The posterior region, over the
occipital lobe, seems to be the most significant when considering
the highest (high beta and both gammas) and the lowest (delta and
theta) frequency bands, indicating again that differences between
conditions is emerging from actual EEG activity. Maps from the
middle of the frequency range, alpha and low beta, show more
lateralized regions of interest over the parietal and frontal lobe.
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FIGURE 8

Heatmaps show the sum of subjects (from 0 to 14) for which ERP
amplitudes are significantly di�erent between working memory
condition (0-back vs 2-back). Significance threshold was placed at
the subject level at a FDR corrected z-score of ±2.3262 (equivalent
to p = 0.01).

For this task, EOG activity seems to have a localized differentiated
effect between mental load conditions, particularly for the higher
frequency bands where artifact activity decreases.

Figure 12 highlights the number of subjects showing a
significant difference between low and high cognitive workload
conditions in PSD from 1 to 100Hz for the same twelve channels
subset for each recording equipment as before. The approach is
the same as for the N-back task, refer to Figure 6 for more details.
Significance was calculated through permutation testing and the
resulting statistical scores adjusted using the FDR method for
multiple comparison correction. Significance threshold was put
at p = 0.01, adjusted p-values varied for each subject ranging
from 0.00011 to 0.0072 with an average of 0.0031 for cap-EEG
channels and from 0.00017 to 0.0085 with an average of 0.0037
for ear-EEG channels. The alpha range for this task appear less
differentiated across conditions than for the last. Some channels
have some very bright bins in this interval, but for the cap-EEG
data at least, there is no clear band across all channels. The ear-
EEG data has a clearer indication of strong differences in the
alpha range flanked by a very dark region over the theta range
(4–7Hz) and a darker region just following it. This is not to say
that there were less significant differences in the PSD for this task,
very light areas are found throughout the heatmaps. They were

more largely distributed across the higher frequency ranges, mostly
beyond 20Hz for the ear-EEG data and beyond 30Hz for the cap-
EEG data. Lastly, the cap-EEG data appears to be less significant for
individual subjects beyond 80Hz although this tendency was not
observed in the ear-EEG data.

3.2. Classification results

3.2.1. N-back task
Figure 13 shows individual subject’s single-trial classification

accuracies obtained using an swLDA classifier to predict the class
of individual trials between the high (2-back) and low (0-back)
working memory conditions. The algorithm first performed a
feature selection step, the step-wise linear regression which kept
only the more statistically differentiated features. Then the model
was trained on a portion of the trials and tested on the remaining
trials using only the selected features. Accuracy results show the
percentage of correctly classified trials within the testing sets using
a 10-fold cross-validation scheme. For each subject, the average of
these 10 accuracies was reported and the average over all subjects
is plotted in the same figure. The features used were extracted
from the 1Hz spectral feature range model. This model consists
of PSD extracted from each epoch or trial from 1 to 100Hz in
1Hz interval bins, much like the statistical heatmap data (Figure 6).
The heatmap figure represented the same channels considered for
classification, the lighter regions of the heatmaps showed where the
significant features are concentrated and there is a strong overlap
between these regions and the selected features of the classifier.
They are the features that help differentiate between working
memory loads. This feature model started with 100 features (PSDs)
per channel, 1,200 for the 12 channel model, which represents a
higher number than the number of trials (768). This creates issues
of dimensionality that are problematic for classification purposes.
The ill-advised feature to sample ratio was mitigated through the
feature selection regression. On average, over fourteen subjects, the
final number of features kept for this model went from 1,200 for the
twelve channel models to 306 for the cap-EEG data and 285 for the
ear-EEG data. For the two channel models, the initial number of
features was 200 and the number of features used for classification
was on average 35 for the cap-EEG data and 34 for the ear-EEG
data.

Classification results of Figure 13 show that all subjects
achieved significant above-chance level performance for both
recording equipment, for the twelve and the two-channel models.
For the twelve channel models, average accuracy was 96% for
the cap-EEG and 95% for the ear-EEG;. For the two-channel
models, average accuracy was 76% for the cap-EEG and 74% for
the in-ear EEG. It might appear that cap-EEG data yielded higher
classification accuracies than ear-EEG data but these differences
were not found to be statistically significant with a paired t-test
comparing the 10 fold classification accuracies of all subjects and
a p = 0.001 threshold (p = 0.034 for the twelve channels and p

= 0.230 for the two channels). On an individual subject level, it is
interesting to note that some of the two channel ear-EEG models
which represent only dry in-ear electrodes outperform greatly the
occipital channels of the cap-EEG models, it is the case of subject 1
and 6 for example and subject 4 to a lesser extent.
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FIGURE 9

Grand average PSD for the arithmetic task for selected cap and ear-EEG channels (N = 10).

FIGURE 10

Boxplot of PSD for seven frequency bands for the arithmetic task for selected cap and ear-EEG channels (N=10; *z-score > ±2.3262 - eq. p = 0.01,
**z-score > ±3.0902 - eq. p = 0.001).

For the N-back task, time domain features were also available.
Table 1 provides the classification accuracy for different feature
modalities: spectral, temporal and mixed. Both cap and ear-
EEG data were considered for both channel models. The spectral
1Hz interval bins feature and the temporal 1,000ms (in 10
ms interval) features started out with the same number of
initial features, 100. The mixed or “fusion” model had 200
initial features per channels. The results show that the spectral
domain features outperformed the temporal domain features

and that the fusion model outperformed both of them. This
is statistically significant for both channel subsets across both
recording systems with p-values all under 10-7. While the
performances for the spectral range models did not differ
statistically between recording equipment. The performances
of the classifier for the temporal and fusion models were all
significantly better for the cap-EEG data than the ear-EEG data
with p-values all under 10-4 for both channel subsets and both
feature model.
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FIGURE 11

Topographical maps of PSD for seven frequency bands for the arithmetic task (N=10, first two rows are grand averages, the last is the statistical
results of permutation testing between both conditions–positive z-scores (red) indicate an increase in PSD from the 0-back to the 2-back, negative
z-scores (blue) indicate a decrease).

FIGURE 12

Heatmaps showing the sum of subjects (from 0 to 10) for which PSD values are significantly di�erent between cognitive workload conditions (low vs.
high). Significance threshold was placed at the subject level at a FDR corrected z-score of ±2.3262 (equivalent to p = 0.01).

When considering the final number of features for each
model, it can be noted that the final number of temporal
features was a lot less than the final number of spectral features,
about 80 % less for the 12 channel models and close to 50 %
for the 2 channel model. The final number of mixed features
selected by the step-wise linear regression was unexpectedly higher

than the addition of those different modality features for the
twelve channel configuration, 37% more features on average.
This could explain the abnormally high classification accuracies
of the fusion model for the twelve channel models, probably
brought on by over-fitting. This was not the case for the 2
channel model.
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FIGURE 13

Single-Trial classification accuracies for the N-back task with a 1Hz interval bins and a 1–100Hz frequency range (the black line represents chance
level at 57%).

FIGURE 14

Single-trial classification accuracies for the arithmetic task with a 1Hz interval bins and a 1–100Hz frequency range (the black line represents chance
level at 57%).

3.2.2. Arithmetic task
Figure 14 shows the single subject classification accuracy for the

same model as in Figure 13 for the arithmetic task (1Hz interval
frequency range model from 1 to 100Hz) for each recording system
and for a twelve and two-channel feature set. The initial number of

features was again undesirably close to the number of trials, around
1,392 compared to 1,200 initial features for the twelve-channel
model. Again, the step-wise linear regression step helped reduce
the number of features considered for classification to 139 for
the twelve-channel cap-EEG, 171 for the twelve-channel cap-EEG
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TABLE 1 N-back task single-trial classification results for di�erent feature

modalities (in grey is the final number of features kept by each classifier

over the initial number of features available).

12 channels 2 channels

cap-EEG ear-EEG cap-EEG ear-EEG

Range 1 to 100Hz
1Hz steps

96 %
(306/1,200)

95 %
(285/1200)

76
(35/200 %)

73 %
(34/200)

Temporal
1 to 1000ms

86 %
(76/1,200)

76 %
(57/1200)

72 %
(17/200)

64 %
(16/200)

Fusion: temporal
and 1 to 100Hz

100 %
(564/2,400)

99 %
(592/2400)

81 %
(48/400)

77 %
(52/400)

data, 34 for the two-channel cap-EEG and 36 for the two-channel
ear-EEG. The figure shows that all subjects performed better than
chance-level for the twelve-channel feature set with an average of
81% for cap-EEG, 84% for ear-EEG. For the two-channel feature
set, the average was 70% for the cap-EEG and 69% for the in-ear
EEG. On average, it seems that the ear-EEG features outperformed
the cap-EEG ones for the twelve channel model but not for the two
channel model. However, none of these differences are significant
at an alpha of 0.001 although the twelve channel ear-EEG model
comes close to this threshold (p= 0.0013 for the twelve-channel, p=
0.309 for the two-channel). Some individual subjects show better
performances for the in-ear EEG data compared to the cap in this
task as well, such is the case for subject 7 and 11 for example.

3.2.3. Spectral feature model comparison
Figure 15 is useful to assess the influence of certain feature

parameters over classification accuracies. The same tendencies can
be observed for both tasks: on the left, a decrease in classification
accuracy with decreasing spectral resolution; on the right, a
decrease in classification accuracy with decreasing frequency cut-
off for the spectral range considered. The feature models in the left
plot all have a frequency cut-off of 100Hz. The accuracy results
from the right plots are those of the twelve channel ear-EEGmodel,
the tendencies were the same for other channel subsets. The feature
sets are described in detail in Section 2.5. They are labeled as 0.5Hz
for 0.5Hz-interval bins (200 initial features per channel); 1Hz for
the 1Hz-interval bins (100 initial features per channel); the 5Hz
model corresponds to bands of 5Hz or less (21 initial features per
channel); and finally the band models have the same number of
initial features per channel as their band number.

Statistically for the N-back task, each decrease in resolution
from 0.5 Hz down to 5 Hz did yield a significantly lower reported
classification accuracy average for all channel models. After that
resolution, drops in accuracy are not significant (alpha 0.001)
from one model to the next until reaching the 5 bands model
where all four channel models perform statistically worse than all
other models considered. The drop in accuracy and subsequent
stagnation can be linked to the number of features in the final
models. For the twelve channel models the final number of features
is about 540 for the 0.5Hz models and just under 300 for the 1Hz
model. After this, it drops to below 50 features for the 5Hz and 17
for the 5 band models. The two channel models only have 5 or 6
final features considered by the classifier yet they still manage to

yield accuracies over chance-level (73% for the cap-EEG and 65%
for the ear-EEG).

For the arithmetic task, statistical analysis results are quite
similar. Significant drops in accuracy can be found from 0.5 to 1
Hz and then again from 1Hz to 5Hz for all four channel. After this,
no significant drop from one model to the next is recorded until
the 5 band model which performs significantly worse than the 5Hz
model but only for the twelve channel models.

The right side plots show that classification accuracy decreases
when the gamma cut-off frequency is lowered. The seven band
model stops at 80Hz because with a 45Hz cut-off frequency, it
consisted of the same features as the 5Hz model. All reported
average accuracy results plotted for both tasks and for the 5 feature
models were lower when the cut-off frequency dropped from
100 to 80Hz and from 80 to 45Hz. However, not all decreases
were statistically significant. Lowering the cut-off to 45Hz was
significant for both tasks for the three range models considered
(0.5, 1, and 5 Hz); while the drop in accuracy going to a 80Hz cut-
off frequency was statistically significant for the 0.5Hz and the 1Hz
model when considering the N-back task; and for the 1Hz model
for the arithmetic task.

4. Discussion

Future BCIs have the potential to change how we interact
with technology, assuming they can be used outside of controlled
environments. Besides comfort and aesthetics, the signal must be
of sufficient quality if one is to reliably decode different mental
states. Mobile EEG recording equipment with proven signal quality
is already available (Debener et al., 2012; De Vos et al., 2014a).
In this study, we investigated the potential of ear-EEG to monitor
focus, a concept that overlaps with notions such as concentration,
attention, engagement and intensity of a task. Tasks were chosen
to represent different features of focus, namely working memory
and cognitive workload. The goal in both of these tasks was to
differentiate between low and high mental demand to ascertain
differences in EEG activity that could be indicative the level of
focus. We compared the quality of neural oscillation recordings
of a mobile ear-EEG recording system to that of a conventional
84-channel wet cap-EEG wired system, used concurrently. The ear-
EEG electrodes were wet around-the-ear electrodes (cEEGrids) and
dry in-ear electrodes (TIPtrodesTM).

When comparing the cap-EEG data obtained with existing
studies using similar paradigms (Rebsamen et al., 2011; Brouwer
et al., 2012), our results were comparable. For the N-back task, we
found a strong and significant alpha peak with its power inversely
proportional to the working memory load (Figure 3). The peak
was visible in both cap and ear channels, although cap channel
power was stronger for this interval. In the higher frequency ranges,
above 30Hz, it seemed the PSD order for both recording equipment
inverted with the higher demand translating into higher PSD levels
over high beta and gamma bands. Over this higher frequency
range, ear channels recorded slightly stronger PSD signals. Overall,
these grand average power spectrum seem to offer information
of comparable quality across both recording systems as further
evidenced by Figure 4. This next figure highlights the differences
in distribution of all frequency ranges in more compelling detail,
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FIGURE 15

Average of individual subject’s classification accuracies for di�erent spectral resolution and frequency range cut-o� for the N-back (N = 14) and
arithmetic task (N = 10).

through its representation of the PSD distributions but also thanks
to the statistical results it features. The results of the boxplots
establish that for this task, EEG activity elicited from a higher
working memory demand translates into statistically lower PSD for
frequency ranges under 20Hz; from delta to alpha. Above 30Hz,
higher working memory demand translates to a higher PSD. The
transition between this inversion occurs over the beta range from
12 to 30Hz where it does fluctuate between channels and range
considered. Cap channels are quite effective at showing differences
in the lower beta range, behaving much like the alpha range
distribution: lower medians for the more demanding condition
and less outlier values. For the higher beta range, the around-the-
ear channel show a statistically more significant and visually more
compelling difference where themore demanding condition show a
higher distribution andmore outliers. The dry in-ear EEG channels’
results seemed less conclusive when considering the grand averages,
particularly when it came to the higher frequency bands, but the
differences evidenced in the boxplots were still very significant for
the gamma frequency range.

The topographical maps show how these differences in
PSD were distributed spatially. They are consistent with the
previous results, upholding the choice of these selected channels
to represent EEG activity for this recording system. The shift
between the lower frequency ranges which were predominantly

blue, indicative of a decrease in activity to maps with a lot more
red, indicative of an increase in EEG activity, for the higher
frequency range is complemented with more information on the
spatial origin of these differences in PSD. The higher frequency
bands (high beta and gamma oscillations), residual artifacts
of eye movement clearly contaminated the PSD topographical
maps. However, it was shown that activity in this ocular region
is not where the differences between working memory load
are the strongest. For these higher frequency bands, higher
working memory load had the strongest statistical significance
over posterior regions of the maps. Visible clusters of heightened
activity can be seen over the temporal lobes reaching more
towards the occipital region. This lets us surmise that although
PSD in the high beta and gamma ranges incorporates residual
muscle activity which contributed unwittingly to the results,
the differences in mental states are in fact driven by activity
emanating from cortical areas. This was important to show
particularly for the gamma range where EOG activity is known
to persist even after appropriate data pre-processing and can be
underestimated when using a nose reference (Yuval-Greenberg
et al., 2008).

Heatmaps of Figure 6 have shown that differences at the
individual subject level are strong for the alpha range and for
the higher frequency bands (30Hz and up), sometimes stronger
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than grand average or cumulative distribution differences. Boxplot
representation showed that there is a high degree of variance
in data sets obtained from multiple subjects and that the
medians are not the best tool to assess differences between these
populations. Heatmaps considered individual differences, which
were sometimes of opposite signs, to assess which frequency ranges
were the most indicative of change in EEG activity between mental
load conditions.

The classification accuracy results for this task obtained with a
spectral range feature set from 1 to 100Hz in 1Hz intervals were
well above chance-level, that is, over 95% for the twelve-channel
models and over 70% for the two-channel models. The working
memory condition could reliably be decoded from both cap and
ear-EEG signals as well as in-ear EEG. Cap and ear EEG recording
equipment produced comparable results and although the cap-
EEG feature sets often had a few percentage points over ear-EEG
feature sets, this difference was not significant. This was all themore
impressive given that the twelve-channel cap-EEG electrodes were
placed around the entire head versus the ear-EEG electrodes closer
together and condensed in two much narrower regions around and
inside the ears. The two-channel model’s comparable performances
were noteworthy particularly since we compared occipital wet
electrodes to in-ear dry electrodes for a task with visual stimuli. On
an individual subject basis, none of the recording equipment was
consistently better than the other. A better result with the twelve-
channel cap-EEG feature model did not mean that the two-channel
cap-EEG would perform better and vice versa.

For the arithmetic task, again we observed clear differences
betweenmental load conditions, however these were not always the
same differences as what we saw for the N-back task. The alpha
range provided a visible peak and could be used to distinguish
between conditions but the difference was mostly for the ear-
EEG channels this time and said difference was in the opposite
direction than for the other task. The cap-EEG channels grand
average representation of PSD (Figure 3) did not provide a clear
differentiation between workload levels at this frequency range,
although significant differences were confirmed with the boxplots
(Figure 4). This is in line with the concept of internalized attention
vs. externalized attention (Magosso et al., 2019). For this task, it was
observed that with a higher workload came a higher PSD for the
entire frequency range considered for both recording equipment.
Only the high beta range (20 to 30Hz) showed areas of overlap
between conditions and for cap channels only. Other than this,
the low workload conditions had systematically and significantly
lower PSD at every frequency range considered. For a majority of
the bands, the standard deviation for the low workload condition
was also much smaller than the high workload condition. Although
the differences in EEG activity for the lower frequency bands
(under 20Hz) were not what was observed for the N-back task,
the gamma band distributions had important similarities between
the two tasks. When considering the topographical distribution
of PSD for each neural oscillation (Figure 5), the difference maps
all showed large areas with positive z-scores, which translates to
stronger PSD with higher workload demand. The regions where
these differences were the strongest and most significant were
distributed over several cortical regions according to the frequency
range considered. The alpha and lower beta band’s PSD changes

were concentrated over the temporal region which could be an
indication as to why the ear-EEG channels performed better at
differentiating activity in that range. A phenomenon confirmed
again in the statistical heatmap of Figure 12, where the alpha band
was visible for the ear but not so much for the cap-EEG channels.
Regarding the higher frequency range maps, similar conclusions
could be drawn for both tasks for high beta and both gamma bands.
Specifically, grand average workload condition maps pointed to
the ocular region, indicative of muscle artefacts, but the most
significant areas when considering differences between conditions
pointed to the parietal and occipital regions consistent with actual
EEG activity. Some clusters were also found closer to the temporal
regions for the beta bands. These considerations are important
since the features used for classification are selected based on
their statistical difference between conditions. Conclusions of the
topographical analyses therefore support the argument that the
features used for classification are in fact related to actual brain
activity dynamics. The classification accuracy results for this task,
obtained with the same range model as before, were again well
above chance-level, 80% and more for the twelve channel models
and close to 70% for the two channel models. The cognitive
workload could be decoded from both cap and ear-EEG signals,
around and inside the ear. Statistical analysis of both task, did reveal
that for this task, the ear-EEG channel sets performed slightly better
than the cap-EEG channels for some subjects over both channel
models, twelve and two.

We conclude that EEG spectral features recorded from inside
and around the ear can reliably assess different focus levels may it be
related to working memory or cognitive workload features. These
features systematically allow for significantly above-chance level
classification accuracy between all levels of difficulty. Therefore, it
would be feasible to develop a concentration or focus-monitoring
BCI in the form of an earpiece.

The next steps for this line of research will be to test these
conclusions under less restrictive conditions, outside of a controlled
environment and with more diverse and complex tasks. Such data
obtained from more realistic focus conditions will obviously be
noisier, and will be harder to appropriately label for the purpose
of training new classification algorithms. On the other hand,
the tasks presented for this study might have been biased or
misrepresented the focused state of individual subjects. The degree
to which the participant’s might have felt involved in these repetitive
tasks throughout the recording and the perceived difficulty of
the task could vary as several subjects did comment on the
tediousness of the N-back task in particular. Recording participants
in more realistic focus scenarios might actually provide better,
more consistent differences across PSD features between tasks
and between participants. The nature of the tasks will most likely
have an impact on which spectral ranges are best to characterize
focus. As we have seen here, the alpha frequency although very
effective to distinguish between working memory conditions and
between cognitive workload conditions behaves in a completely
opposite fashion from one task to the other. It might be too task
dependent to be useful in this context. Higher frequencies in the
beta and gamma bands, although mixed with muscular activity,
might procure more consistent markers of focus across a variety
of tasks.
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This study showed grand average EEG results and distributions
from all participants but reported classification accuracies for
within-participant trial data. This choice was supported by Aroudi
et al. (2016)’s results on attention decoding, which showed that
given sufficient individual data, individual models will outperform
the group model given that inter-subject variance is always larger
than variance within individuals for this type of data. Nevertheless,
according to the type of application considered it might still make
sense to try and improve group model classification. Going back
to the boxplot from both tasks, distributions of PSD values were
non-uniform, skewed and contained a lot of outliers. The medians
were often very close in value while the spread and reach of the
distributions were in fact very different. This might be related
to the high variance across subjects which could be improved
through better standardization methods when comparing PSD
values. Spectral selection, filtering and the use of band ratios
seem like interesting avenues to address this (Berka et al., 2007).
This will most likely imply further research on feature extraction
procedures and preprocessing specifications that can have a great
impact on classification accuracies (Farquhar and Hill, 2013).
The choices made, that led to the specific features used for this
study, included montage selection (electrode discrimination from
eighty-four to twelve for the cap-EEG data and twenty to twelve
for the ear-EEG data), resampling and filtering, epoch duration
selection and base-lining. ICA was used to remove mainly the
eye blink components from the data before choosing the best re-
referencing option for both recording systems. The ear-EEG data
provided the best results using a contralateral reference for each
ear channel, this increased the distance between the reference
and the channels. For the cap-EEG data, the nose reference was
kept as it was the furthest from strong noise contamination from
the concurrent recording systems which affected several cap-
EEG channels around the ears at different locations for different
participants and in intermittent fashion. Linked mastoid reference
was rejected because of this unpredictable noise, most likely
originating from the ear-EEG equipment. It might also have had an
impact by propagation on the use of a common average reference
which strongly impacted individual subject differences and PSD
distributions at individual channel locations, making it harder to
keep a consistent channel selection over all participants and tasks.
The nose-reference although not well suited for source localization
(Mahjoory et al., 2017) produced more consistent results for inter-
subject comparisons of specific electrode locations. Topographical
representation of PSD can be biased by a nose reference because
of the proximity with ocular artefact location (Trujillo et al.,
2005), therefore conclusions regarding topographical data from this
study were tested against common average reference topographical
representations and held up.

Stronger classification algorithms might be necessary to
identify the important features shared between individuals and
normalization of the spectral data will most likely be a determining
factor in improving this process. In order for the algorithms to
be able to generalize across individuals, selecting which frequency
ranges are used as features could be very relevant as well as better
standardization of the features across subjects through the use
of frequency band ratios for example. On model performance
comparisons, we have learned from this study that higher spectral

resolution tends to produce better classification results at the
individual subject level, as does a higher cut-off frequency.
However, increasing spatial resolution increases the dimensionality
of each sample increasing the risk of over-fitting. This explains why
even though the 0.5 Hz resolution models performed better than
the 1Hz resolution, the later models were used for visualization and
for single trial classification since the final number of features was
more appropriate considering our sample size. The choice of a 100
Hz cut-off frequency was influenced by the feature resolution as this
model performed significantly better with this cut-off frequency
for both tasks. It might be interesting to do future research on
maximum useful frequency cut-off as ear-EEG channel features in
particular seem like they would be significant past this 100Hz limit.
Lastly, the study of temporal features showed that even though
they were capable of predicting with above chance-level accuracy
the levels of cognitive demand for both recording equipment
and channel subsets, they performed worse than spectral ones.
Results of this study have shown that while ear-EEG spectral
features performed on par with cap-EEG spectral features, ear-EEG
temporal data is much noisier than cap-EEG’s temporal data as
evidenced by the grand average ERP waveforms (Figure 7) and the
temporal heatmaps (Figure 8). Dry in-ear EEG channels did not
produce a grand average P300 response but were sometimes better
than selected cap-EEG channels at differentiating PSD between
conditions. Hence ear-EEG might be better suited for applications
that rely on spectral data rather than temporal responses, such
as focus monitoring. It is worth noting that mixing temporal
with spectral features did improve classification results compared
to spectral features alone. Although given the abnormally high
performance of this type of fusion model (near 100 %), and the
high dimensionality of these models, over-fitting is suspected to
have happened, despite feature reduction. This will be decisive if
these results are to be exploited in a BCI context, it would also make
sense to report information transfer rates along with classification
accuracies.

Future research should also focus on improving ear-EEG
electrode technology. The TIPtrodesTM are very sensitive to
movement, whichmakes them single-use and susceptible to various
sources of electromagnetic noise. Around-the-ear electrodes used
in this study were wet, innovation in electrode material and
treatment could allow their use as dry electrodes. Movement-
tolerance of such ear-EEG recording system will surely be
a research area of interest going forward. Tighter contact,
possibly achieved through custom-fitted earpieces and shielding
technologies, could effectively decrease the potential impact of
movement artifacts when developing these applications for daily
life situations.

5. Conclusion

Focus can be assessed using EEG spectral features that
were recorded from sites in and around-the-ear using a
mobile EEG amplifier. These features are consistent with
known characteristics of working memory and cognitive
workload. Ear-EEG is a promising candidate for future
BCI and brain-monitoring applications, which could help
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with our day-to-day activities, such as workplace security
and productivity.
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