30 research outputs found
nod Genes and Nod signals and the evolution of the rhizobium legume symbiosis.
The establishment of the nitrogen-fixing symbiosis between rhizobia and legumes requires an exchange of signals between the two partners. In response to flavonoids excreted by the host plant, rhizobia synthesize Nod factors (NFs) which elicit, at very low concentrations and in a specific manner, various symbiotic responses on the roots of the legume hosts. NFs from several rhizobial species have been characterized. They all are lipo-chitooligosaccharides, consisting of a backbone of generally four or five glucosamine residues N-acylated at the non-reducing end, and carrying various O-substituents. The N-acyl chain and the other substituents are important determinants of the rhizobial host specificity. A number of nodulation genes which specify the synthesis of NFs have been identified. All rhizobia, in spite of their diversity, possess conserved nodABC genes responsible for the synthesis of the N-acylated oligosaccharide core of NFs, which suggests that these genes are of a monophyletic origin. Other genes, the host specific nod genes, specify the substitutions of NFs. The central role of NFs and nod genes in the Rhizobium-legume symbiosis suggests that these factors could be used as molecular markers to study the evolution of this symbiosis. We have studied a number of NFs which are N-acylated by α,ÎČ-unsaturated fatty acids. We found that the ability to synthesize such NFs does not correlate with taxonomic position of the rhizobia. However, all rhizobia that produce NFs such nodulate plants belonging to related tribes of legumes, the Trifolieae, Vicieae, and Galegeae, all of them being members of the so-called galegoid group. This suggests that the ability to recognize the NFs with α,ÎČ-unsaturated fatty acids is limited to this group of legumes, and thus might have appeared only once in the course of legume evolution, in the galegoid phylum
Medicago sativa cv. Mercedes genome sequence
Note on the methodology used to obtain the genome sequence of Medicago sativa, and results obtained, as a complementary information to the portal containing the data: https://medicago.toulouse.inra.fr/MsatMercedes-NRGENE-20181029/An alfalfa (or lucerne) genome reference sequence is an essential tool for breeding of this major legume species. A clone of Flemish origin has been sequenced and the genome assembly has been carried out with NRGene protocols. A total of almost 190 000 scaffolds have been generated and this genome assembly reaches 2.6 Gb (80% of the 3.2 Gb expected). Genome annotation has provided 233 049 protein-coding genes and 36 752 non-protein coding genes. A genome portal based on JBrowse has been developed for searching the annotated genome (https://medicago.toulouse.inra.fr/MsatMercedes-NRGENE-20181029/)
The common nodABC genes of Rhizobium meliloti are host-rangeâdeterminants
Symbiotic bacteria of the genus Rhizobium synthesize lipo-chitooligosaccharides, called Nod factors (NFs), which act as morphogenic signal molecules on legume hosts. The common nodABC genes, present in all Rhizobium species, are required for the synthesis of the core structure of NFs. NodC is an N-acetylglucosaminyltransferase, and NodB is a chitooligosaccharide deacetylase; NodA is involved in N-acylation of the aminosugar backbone. Specific nod genes are involved in diverse NF substitutions that confer plant specificity. We transferred to R. tropici, a broad host-range tropical symbiont, the ability to nodulate alfalfa, by introducing nod genes of R. meliloti. In addition to the specific nodL and nodFE genes, the common nodABC genes of R. meliloti were required for infection and nodulation of alfalfa. Purified NFs of the R. tropici hybrid strain, which contained chitin tetramers and were partly N-acylated with unsaturated C16 fatty acids, were able to elicit nodule formation on alfalfa. Inactivation of the R. meliloti nodABC genes suppressed the ability of the NFs to nodulate alfalfa. Studies of NFs from nodA, nodB, nodC, and nodI mutants indicate that (i) NodA of R. meliloti, in contrast to NodA of R. tropici, is able to transfer unsaturated C16 fatty acids onto the chitin backbone and (ii) NodC of R. meliloti specifies the synthesis of chitin tetramers. These results show that allelic variation of the common nodABC genes is a genetic mechanism that plays an important role in signaling variation and in the control of host range
Genetic variation in host-specific competitiveness of the symbiont Rhizobium leguminosarum symbiovar viciae
International audienceLegumes of the Fabeae tribe form nitrogen-fixing root nodules resulting from symbiotic interaction with the soil bacteria Rhizobium leguminosarum symbiovar viciae ( Rlv ). These bacteria are all potential symbionts of the Fabeae hosts but display variable partner choice when co-inoculated in mixture. Because partner choice and symbiotic nitrogen fixation mostly behave as genetically independent traits, the efficiency of symbiosis is often suboptimal when Fabeae legumes are exposed to natural Rlv populations present in soil. A core collection of 32 Rlv bacteria was constituted based on the genomic comparison of a collection of 121 genome sequences, representative of known worldwide diversity of Rlv . A variable part of the nodD gene sequence was used as a DNA barcode to discriminate and quantify each of the 32 bacteria in mixture. This core collection was co-inoculated on a panel of nine genetically diverse Pisum sativum , Vicia faba , and Lens culinaris genotypes. We estimated the relative Early Partner Choice (EPC) of the bacteria with the Fabeae hosts by DNA metabarcoding on the nodulated root systems. Comparative genomic analyses within the bacterial core collection identified molecular markers associated with host-dependent symbiotic partner choice. The results revealed emergent properties of rhizobial populations. They pave the way to identify genes related to important symbiotic traits operating at this level
Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development
International audienceAlthough rhizobia that establish a nitrogen-fixing symbiosis with legumes are also known to promote growth in non-legumes, studies on rhizobial associations with wheat roots are scarce. We searched for Rhizobium leguminosarum symbiovar viciae (Rlv) strains naturally competent to endophytically colonize wheat roots. We isolated 20 strains from surface-sterilized wheat roots and found a low diversity of Rlv compared to that observed in the Rlv species complex. We tested the ability of a subset of these Rlv for wheat root colonization when co-inoculated with other Rlv. Only a few strains, including those isolated from wheat roots, and one strain isolated from pea nodules, were efficient in colonizing roots in co-inoculation conditions, while all the strains tested in single strain inoculation conditions were found to colonize the surface and interior of roots. Furthermore, Rlv strains isolated from wheat roots were able to stimulate root development and early arbuscular mycorrhizal fungi colonization. These responses were strain and host genotype dependent. Our results suggest that wheat can be an alternative host for Rlv; nevertheless, there is a strong competition between Rlv strains for wheat root colonization. In addition, we showed that Rlv are endophytic wheat root bacteria with potential ability to modify wheat development