25 research outputs found
Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
Loss of NKX3.1 by Inflammatory Microenvironment Resulted in Uncontrolled Proliferation in Prostate Cells
European Multidisciplinary Cancer Congress on Integrating Basic and Translational Science, Surgery, Radiotherapy, Medical oncology, Advocacy and Care -- SEP 23-27, 2011 -- Stockholm, SWEDENWOS: 00029575280046
The redox biology network in cancer pathophysiology and therapeutics
PubMed ID: 26122399The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies. © 2015 The Authors.BM1203/EU-ROS E05/2014 European Social Fund, ESF European Cooperation in Science and Technology POSDRU141531Gina Manda, Adrian Manea, Bilge Debelec Butuner and Kemal Sami Korkmaz were supported by the European Cooperation in Science and Technology (COST Action BM1203/EU-ROS ); Gheorghita Isvoranu was supported by the Sectorial Operational Program Human Resources Development (SOPHRD), financed by the European Social Fund and the Romanian Government under the Contract no. POSDRU141531 ; the work of Maria Victoria Comanescu was supported by the Romanian National Agency for Research and Innovation , under the Program Capacities, Romania-CERN (Grant E05/2014 ). -
Activation of distinct antiviral T-cell immunity: A comparison of bi- and trispecific T-cell engager antibodies with a chimeric antigen receptor targeting HBV envelope proteins.
Despite the availability of an effective prophylactic vaccine, 820,000 people die annually of hepatitis B virus (HBV)-related liver disease according to WHO. Since current antiviral therapies do not provide a curative treatment for the 296 million HBV carriers around the globe, novel strategies to cure HBV are urgently needed. A promising approach is the redirection of T cells towards HBV-infected hepatocytes employing chimeric antigen receptors or T-cell engager antibodies. We recently described the effective redirection of T cells employing a second-generation chimeric antigen receptor directed against the envelope protein of hepatitis B virus on the surface of infected cells (S-CAR) as well as bispecific antibodies that engage CD3 or CD28 on T cells employing the identical HBV envelope protein (HBVenv) binder. In this study, we added a trispecific antibody comprising all three moieties to the tool-box. Cytotoxic and non-cytolytic antiviral activities of these bi- and trispecific T-cell engager antibodies were assessed in co-cultures of human PBMC with HBV-positive hepatoma cells, and compared to that of S-CAR-grafted T cells. Activation of T cells via the S-CAR or by either a combination of the CD3- and CD28-targeting bispecific antibodies or the trispecific antibody allowed for specific elimination of HBV-positive target cells. While S-CAR-grafted effector T cells displayed faster killing kinetics, combinatory treatment with the bispecific antibodies or single treatment with the trispecific antibody was associated with a more pronounced cytokine release. Clearance of viral antigens and elimination of the HBV persistence form, the covalently closed circular (ccc) DNA, through cytolytic as well as cytokine-mediated activity was observed in all three settings with the combination of bispecific antibodies showing the strongest non-cytolytic, cytokine-mediated antiviral effect. Taken together, we demonstrate that bi- and trispecific T-cell engager antibodies can serve as a potent, off-the-shelf alternative to S-CAR-grafted T cells to cure HBV
Comparing the functionality of redirected T cells in HBV immunotherapy using chimeric antigen receptors or T-cell engaging antibodies
ESGCT 27th Annual Congress in collaboration with SETGyc Meeting -- OCT 22-25, 2019 -- Barcelona, SPAINButuner, Bilge Debelec/0000-0001-8112-9241WOS: 000495173100202[No abstract available]European Soc Gene & Cell Therapy, Soc Espanola Terapia Genica & Cellula
TNF?-mediated loss of ß-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells
PubMed ID: 25360740Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered ß-catenin signaling upon TNF? exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of ß-catenin following increased phosphorylation of Akt(S473) and GSK3ß(S9). Consistently, we observed that subsequent increase in ß-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the ß-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of ß-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted ß-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of ß-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the ß-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology. © 2014 Debelec-Butuner et al
Ubiquitously expressed hematological and neurological expressed 1 downregulates Akt-mediated GSK3ß signaling, and its knockdown results in deregulated G2/M transition in prostate cells
PubMed ID: 21323578As the molecular mechanism of ß-catenin deregulation is not well understood, and stabilized ß-catenin is known to translocate into the nucleus and activate genes for proliferation, a novel regulatory factor, hematological and neurological expressed 1 (HN1), for Akt-GSK3ß-ß- catenin axis is reported here. In our studies, HN1 gene structure was characterized. HN1 expression was found to be epidermal growth factor-responsive in PC-3 cells, and protein expression was also upregulated in PC-3 and LNCaP but not in DU145 cells. Additionally, HN1 was found to be downregulated by the specific AKT inhibitor wortmannin but not with PI3K or MAPK inhibitors, LY294002 and PD98059, respectively, in PC-3 and MCF-7 cells. Further, siRNA-mediated knockdown of HN1 resulted in considerable increase in Akt (S473) and GSK3ß (S9),(Y216) phosphorylations; moreover, subsequent accumulation of ß-catenin, increase in c-myc expression, and nuclear accumulation of cyclin D1 were observed in PC-3 cells. Knockdown of HN1 also resulted in prolongation of G 1 phase in cell cycle, increasing tetraploidy, presumably because of cells escaping from abnormal mitosis in PC-3 cells. Consistently, overexpression of HN1 reversed the cell-cycle-specific observations, resulted in accumulation of cells in G 2/M, and reduced the proliferation rate, which were investigated using flow cytometry and methylthiazol tetrazolium assays. As activating mutations of ß-catenin have been demonstrated in late-stage tumors, and ß-catenin stabilization was correlated with poor prognosis in previous reports, epidermal growth factor-upregulated HN1 expression might have a role in deregulating the AKT-GSK3ß (S9)-mediated signaling as a novel compensating mechanism. © 2011 Mary Ann Liebert, Inc
Evaluation of the cationic solid lipid nanoparticles carrying siRNA against EphA2 receptor as non-viral delivery systems
ESGCT 27th Annual Congress in collaboration with SETGyc Meeting -- OCT 22-25, 2019 -- Barcelona, SPAINButuner, Bilge Debelec/0000-0001-8112-9241WOS: 000495173100576[No abstract available]European Soc Gene & Cell Therapy, Soc Espanola Terapia Genica & Cellula
TNFα-Mediated Loss of β-Catenin/E-Cadherin Association and Subsequent Increase in Cell Migration Is Partially Restored by NKX3.1 Expression in Prostate Cells
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology