64 research outputs found

    Assessing visual function following transplantation of mouse ESC-derived rod photoreceptor precursors

    Get PDF
    Photoreceptor replacement therapy is a promising strategy for treating retinal degenerative diseases leading to blindness. Previous work by our lab has demonstrated proof-of-concept that mouse embryonic stem cells (ESCs) can be differentiated, in a 3D culture system, into post-mitotic rod photoreceptor precursors for transplantation. However, rescue of visual function following transplantation of ESC-derived rod precursors has yet to be demonstrated. This project therefore sought to optimise the transplantation of mouse ESC-derived rod photoreceptor precursors into mouse models of retinal disease, define the optimal developmental stage for transplantation in an endogenous photoreceptor reporter ESC line, and thereafter, assess the extent to which visual function is restored in recipient animals post-transplantation. We assessed different aspects of optimising the transplantation protocol, such as dissociation method, AAV2 virus pseudotype used for labelling photoreceptors, and host immune suppression, and also characterised photoreceptor differentiation in a Crx.GFP ESC line. Additionally, we developed a multi-electrode array (MEA) set up and stimulus protocol that allowed us to detect visual responses from retinal explants. These studies demonstrated the generation of large numbers of healthy, developmentally-homogenous mouse ESC-derived rod photoreceptors for transplantation, and resulted in a significantly increased number of donor-reporter labelled cells observed in the host outer nuclear layer (ONL) following transplantation. Most importantly, using the MEA, we were able to demonstrate for the first time that mouse ESC-derived photoreceptor precursors were capable of transmitting light-evoked responses following transplantation into a mouse model of severe retinal degeneration. Taken together, these are encouraging first steps towards the use of stem cells for photoreceptor replacement therapy in retinal degenerative diseases

    Vegetarian diets, maybe not as healthy as you think

    Get PDF
    Many are approaching vegetarianism as a viable diet option in recent years, presuming that adopting a vegetarian diet would provide health benefits. This paper explores the possibilities of physical and mental effects that vegetarianism may have on humans and its extent by the use of regression analysis. To measure the possible impacts vegetarian diets may hold on both the physiology and physical aspects of humans, we have utilized the measures of life expectancy and prevalence of depression respectively. Cross-sectional data were examined from sources such as the World Health Organization, Our World In Data and the World Bank, with figures on vegetarian adoption rates to be made available on Statista. Current studies on mental health impacts are inconclusive, and many relied on survey data to produce findings. The utilization of cross-sectional data on a macro basis would allow our study to account for regional differences whilst providing an objective result. This study aims to raise awareness of the positive and negative impacts of a vegetarian diet, to assist people to make informed decisions. This would be essential as plant-based diets have been receiving more attention in the media

    Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells

    Get PDF
    Since the discovery of induced pluripotent stem cell (iPSC) technology, there have been many attempts to create cellular models of inherited retinal diseases (IRDs) for investigation of pathogenic processes to facilitate target discovery and validation activities. Consistency remains key in determining the utility of these findings. Despite the importance of consistency, quality control metrics are still not widely used. In this review, a toolkit for harnessing iPSC technology to generate photoreceptor, retinal pigment epithelial cell, and organoid disease models is provided. Considerations while developing iPSC-derived IRD models such as iPSC origin, reprogramming methods, quality control metrics, control strategies, and differentiation protocols are discussed. Various iPSC IRD models are dissected and the scientific hurdles of iPSC-based disease modeling are discussed to provide an overview of current methods and future directions in this field

    Effect of COVID-19 on presentations of decompensated liver disease in Scotland

    Get PDF
    BACKGROUND AND AIMS: SARS-CoV-2 and consequent pandemic has presented unique challenges. Beyond the direct COVID-related mortality in those with liver disease, we sought to determine the effect of lockdown on people with liver disease in Scotland. The effect of lockdown on those with alcohol-related disease is of interest; and whether there were associated implications for a change in alcohol intake and consequent presentations with decompensated disease. METHODS: We performed a retrospective analysis of patients admitted to seven Scottish hospitals with a history of liver disease between 1 April and 30 April 2020 and compared across the same time in 2017, 2018 and 2019. We also repeated an intermediate assessment based on a single centre to examine for delayed effects between 1 April and 31 July 2020. RESULTS: We found that results and outcomes for patients admitted in 2020 were similar to those in previous years in terms of morbidity, mortality, and length of stay. In the Scotland-wide cohort: admission MELD (Model for End-stage Liver Disease) (16 (12–22) vs 15 (12–19); p=0.141), inpatient mortality ((10.9% vs 8.6%); p=0.499) and length of stay (8 days (4–15) vs 7 days (4–13); p=0.140). In the Edinburgh cohort: admission MELD (17 (12–23) vs 17 (13–21); p=0.805), inpatient mortality ((13.7% vs 10.1%; p=0.373) and length of stay (7 days (4–14) vs 7 days (3.5–14); p=0.525)). CONCLUSION: This assessment of immediate and medium-term lockdown impacts on those with chronic liver disease suggested a minimal effect on the presentation of decompensated liver disease to secondary care

    Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Get PDF
    The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation

    Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

    Get PDF
    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration

    New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism.

    Get PDF
    Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood. Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits. In an expanded genome-wide association meta-analysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society
    corecore