44 research outputs found

    Impact of physical incompatibility on drug mass flow rates: example of furosemide-midazolam incompatibility.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Patients in intensive care units receive many drugs simultaneously but through limited venous accesses. Several intravenous therapies have to be administered through the same catheter, thus increasing the risk of physicochemical incompatibility. The purpose of this work was to assess and to quantify the impact of physical incompatibility on the mass flow rates of drugs infused simultaneously to the patient, through an in vitro study. METHODS: Furosemide-midazolam incompatibility was used to assess the impact of physical incompatibility on drug mass flow rates. Furosemide, midazolam, and saline were simultaneously infused. A filter was added at the end of the infusion line to retain visible particles. Two infusion conditions were tested with and without visible particles. A partial least square method on UV spectra was used to determine simultaneously the concentrations of the two drugs at the egress of the terminal extension line. The drug mass flow rate (expressed as mg/h) was calculated as the product of drug concentration versus total flow rate. Observed/theoretical mass flow rate ratios for each drug (%) were determined per infusion condition. RESULTS: Even in the absence of visible particles, precipitation of furosemide led to a drug loss estimated at between 10 % and 15 %. Furosemide is more impacted by interaction because the pH of the mixture is acid and this form is poorly soluble in an aqueous solution. CONCLUSIONS: Physical incompatibility between furosemide and midazolam leads to a significant reduction in drug delivered to the patient and may result in treatment failure

    Residual Paralysis after Emergence from Anesthesia

    No full text
    International audienc

    100 Hz-5 s tetanic stimulation to illustrate the presence of “residual paralysis” co-existing with accelerometric 0.90 train-of-four ratio—A proof-of-concept study

    No full text
    An acceleromyographic train-of-four (TOF) ratio of 0.90 at extubation does not prevent postoperative pulmonary complications in surgical patients receiving non-depolarising muscle relaxants. This recent observation suggests that a more selective neuromuscular transmission monitoring parameter is mandatory to detect more precisely any remaining residual paralysis. The aim of our proof-of-concept study was to evaluate, in patients receiving rocuronium, the degree of 100-Hz, 5-s tetanic fade present when the acceleromyographic TOF ratio has recovered to 0.90. Twenty adult patients scheduled for surgery under general anaesthesia were included. Before anaesthesia induction, a TOF-Watch SXℱ and a VISUAL-ITF© (a prototype monitor for recording isometric force) were positioned on both hands. After induction but before rocuronium injection, a 100-Hz, 5-s tetanus (TET0) was delivered to both ulnar nerves. Thereafter, TOF stimulations every 15 s were delivered to both arms until a TOF ratio > 0.90 was recorded; then, a 100-Hz, 5-s tetanus (TET1) was recorded on the VISUAL-ITF© monitor. The values of the tetanic parameters (force) recorded at TET0 and TET1 were compared using a Wilcoxon rank sum test. Compared to TET0, tetanic parameters of TET1 were significantly lower (median [range]): maximal force 36.4 [19.2−82.6] vs. 25.5 [5.0−42.4] Newton (p <  0.005); residual force 36.2 [18.2−82.0] vs. 5.5 [0.20–38.3] Newton (p < 0.0001) and residual force/maximal force ratio 0.98 [0.89−0.99] vs. 0.17 [0.03−0.90] (p <  0.0001). Our results confirm that even when the acceleromyographic TOF ratios have recovered to above 0.90, the contralateral 100-Hz, 5-s tetanic stimulus may show tetanic fade characteristic of residual neuromuscular block, and may help improve the safety of tracheal extubation
    corecore