5,190 research outputs found

    Dynamic Multi-Objective Optimization With jMetal and Spark: a Case Study

    Get PDF
    Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Efficiently identifying pareto solutions when objective values change

    Get PDF
    Copyright © 2014 ACMThe example code for this paper is available at https://github.com/fieldsend/gecco_2014_changing_objectivesIn many multi-objective problems the objective values assigned to a particular design can change during the course of an optimisation. This may be due to dynamic changes in the problem itself, or updates to estimated objectives in noisy problems. In these situations, designs which are non-dominated at one time step may become dominated later not just because a new and better solution has been found, but because the existing solution's performance has degraded. Likewise, a dominated solution may later be identified as non-dominated because its objectives have comparatively improved. We propose management algorithms based on recording single “guardian dominators" for each solution which allow rapid discovery and updating of the non-dominated subset of solutions evaluated by an optimiser. We examine the computational complexity of our proposed approach, and compare the performance of different ways of selecting the guardian dominators

    Pareto optimality in multilayer network growth

    Get PDF
    We model the formation of multi-layer transportation networks as a multi-objective optimization process, where service providers compete for passengers, and the creation of routes is determined by a multi-objective cost function encoding a trade-off between efficiency and competition. The resulting model reproduces well real-world systems as diverse as airplane, train and bus networks, thus suggesting that such systems are indeed compatible with the proposed local optimization mechanisms. In the specific case of airline transportation systems, we show that the networks of routes operated by each company are placed very close to the theoretical Pareto front in the efficiency-competition plane, and that most of the largest carriers of a continent belong to the corresponding Pareto front. Our results shed light on the fundamental role played by multi-objective optimization principles in shaping the structure of large-scale multilayer transportation systems, and provide novel insights to service providers on the strategies for the smart selection of novel routes

    Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?

    Get PDF
    Using a rather complete description of the in-medium ρ\rho spectral function - being constrained by various independent experimental information - we calculate pertinent dilepton production rates from hot and dense hadronic matter. The strong broadening of the ρ\rho resonance entails a reminiscence to perturbative qqˉq\bar q annihilation rates in the vicinity of the phase boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions - incorporating recent information on the hadro-chemical composition at CERN-SpS energies - essentially supports the broadening scenario. Possible implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure

    Development of expression vectors for Escherichia coli based on the pCR2 replicon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent developments in metabolic engineering and the need for expanded compatibility required for co-expression studies, underscore the importance of developing new plasmid vectors with properties such as stability and compatibility.</p> <p>Results</p> <p>We utilized the pCR2 replicon of <it>Corynebacterium renale</it>, which harbours multiple plasmids, for constructing a range of expression vectors. Different antibiotic-resistance markers were introduced and the vectors were found to be 100% stable over a large number of generations in the absence of selection pressure. Compatibility of this plasmid was studied with different <it>Escherichia coli </it>plasmid replicons viz. pMB1 and p15A. It was observed that pCR2 was able to coexist with these <it>E.coli </it>plasmids for 60 generations in the absence of selection pressure. Soluble intracellular production was checked by expressing GFP under the <it>lac </it>promoter in an expression plasmid pCR2GFP. Also high level production of human IFNγ was obtained by cloning the h-IFNγ under a T7 promoter in the expression plasmid pCR2-IFNγ and using a dual plasmid heat shock system for expression. Repeated sub-culturing in the absence of selection pressure for six days did not lead to any fall in the production levels post induction, for both GFP and h-IFNγ, demonstrating that pCR2 is a useful plasmid in terms of stability and compatibility.</p> <p>Conclusion</p> <p>We have constructed a series of expression vectors based on the pCR2 replicon and demonstrated its high stability and sustained expression capacity, in the absence of selection pressure which will make it an efficient tool for metabolic engineering and co-expression studies, as well as for scale up of expression.</p

    Multi-Objective Counterfactual Explanations

    Full text link
    Counterfactual explanations are one of the most popular methods to make predictions of black box machine learning models interpretable by providing explanations in the form of `what-if scenarios'. Most current approaches optimize a collapsed, weighted sum of multiple objectives, which are naturally difficult to balance a-priori. We propose the Multi-Objective Counterfactuals (MOC) method, which translates the counterfactual search into a multi-objective optimization problem. Our approach not only returns a diverse set of counterfactuals with different trade-offs between the proposed objectives, but also maintains diversity in feature space. This enables a more detailed post-hoc analysis to facilitate better understanding and also more options for actionable user responses to change the predicted outcome. Our approach is also model-agnostic and works for numerical and categorical input features. We show the usefulness of MOC in concrete cases and compare our approach with state-of-the-art methods for counterfactual explanations

    Empirical Investigations of Reference Point Based Methods When Facing a Massively Large Number of Objectives: First Results

    Get PDF
    EMO 2017: 9th International Conference on Evolutionary Multi-Criterion Optimization, 19-22 March 2017, Münster, GermanyThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Multi-objective optimization with more than three objectives has become one of the most active topics in evolutionary multi-objective optimization (EMO). However, most existing studies limit their experiments up to 15 or 20 objectives, although they claimed to be capable of handling as many objectives as possible. To broaden the insights in the behavior of EMO methods when facing a massively large number of objectives, this paper presents some preliminary empirical investigations on several established scalable benchmark problems with 25, 50, 75 and 100 objectives. In particular, this paper focuses on the behavior of the currently pervasive reference point based EMO methods, although other methods can also be used. The experimental results demonstrate that the reference point based EMO method can be viable for problems with a massively large number of objectives, given an appropriate choice of the distance measure. In addition, sufficient population diversity should be given on each weight vector or a local niche, in order to provide enough selection pressure. To the best of our knowledge, this is the first time an EMO methodology has been considered to solve a massively large number of conflicting objectives.This work was partially supported by EPSRC (Grant No. EP/J017515/1

    Interior gap superfluidity in a two-component Fermi gas of atoms

    Full text link
    A new superfluid phase in Fermi matter, termed as "interior gap" (IG) or "breached pair", has been recently predicted by Liu and Wilczek [Phys.Rev.Lett. {\bf 90}, 047002 (2003)]. This results from pairing between fermions of two species having essentially different Fermi surfaces. Using a nonperturbative variational approach, we analyze the features, such as energy gap, momentum distributions, and elementary excitations associated with the predicted phase. We discuss possible realization of this phase in two-component Fermi gases in an optical trap.Comment: 5 page

    Approximate solutions in space mission design

    Get PDF
    In this paper, we address multi-objective space mission design problems. From a practical point of view, it is often the case that,during the preliminary phase of the design of a space mission, the solutions that are actually considered are not 'optimal' (in the Pareto sense)but belong to the basin of attraction of optimal ones (i.e. they are nearly optimal). This choice is motivated either by additional requirements that the decision maker has to take into account or, more often, by robustness considerations. For this, we suggest a novel MOEA which is a modification of the well-known NSGA-II algorithm equipped with a recently proposed archiving strategy which aims at storing the set of approximate solutions of a given MOP. Using this algorithm we will examine some space trajectory design problems and demonstrate the benefit of the novel approach
    corecore