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Abstract. Multi-objective optimization with more than three objec-
tives has become one of the most active topics in evolutionary multi-
objective optimization (EMO). However, most existing studies limit their
experiments up to 15 or 20 objectives, although they claimed to be capa-
ble of handling as many objectives as possible. To broaden the insights in
the behavior of EMO methods when facing a massively large number of
objectives, this paper presents some preliminary empirical investigations
on several established scalable benchmark problems with 25, 50, 75 and
100 objectives. In particular, this paper focuses on the behavior of the
currently pervasive reference point based EMO methods, although other
methods can also be used. The experimental results demonstrate that
the reference point based EMO method can be viable for problems with
a massively large number of objectives, given an appropriate choice of the
distance measure. In addition, sufficient population diversity should be
given on each weight vector or a local niche, in order to provide enough
selection pressure. To the best of our knowledge, this is the first time
an EMO methodology has been considered to solve a massively large
number of conflicting objectives.

1 Introduction

During the past three decades, a large number of evolutionary multi-objective
optimization (EMO) algorithms have been developed for solving multi-objective
optimization problems (MOPs) with two and three objectives [8]. With the devel-
opment of science and technology, real-life applications nowadays consider more
complicated problems with four or more objectives, as known as many-objective
optimization problems. Unfortunately, the curse of dimensionality has always
been the Achilles’s heel of optimization algorithms. It is widely accepted that
the performance of Pareto dominance-based EMO algorithms such as NSGA-
II [7] severely degrade with the increase of the number of objectives [19]. Al-
though some indicator-based EMO algorithms such as SMS-EMOA [4] claim
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to be scalable to any number of objectives in theory, their computational over-
heads in practice increase exponentially with the number of objectives [2]. In
the past three years or so, many-objective optimization has become one of the
most active topics within the EMO community and numerous studies have been
conducted [13], e.g., remedy strategies for the canonical Pareto dominance to im-
prove the convergence property [20], diversity management mechanisms to reim-
burse the loss of selection pressure [1], techniques for speeding up the calculation
of some computationally expensive performance metrics in the indicator-based
methods [3, 15]. Recently, the reference point based method5, e.g., MOEA/D [22]
and NSGA-III [9], has shown very competitive performance for handling prob-
lems with many objectives. Generally speaking, its basic idea is using a set of
pre-defined weight vectors to guide the search process. In particular, the weight
vectors can be used to decompose the original MOP into a set of subproblems,
either as scalarizing functions or simplified MOPs. As a consequence, the conver-
gence is guaranteed by the optimization of each subproblem whereas the diversity
is implicitly controlled by the uniform distribution of weight vectors.

Although the existing many-objective optimizers claim to be able to han-
dle problems scalable to any number of objectives, most, if not all, existing
studies limit their experiments to problems with the number of objectives up
to 15 or 20 [9, 14, 21]. In view of the competitive performance reported in re-
cent studies [12], this paper empirically investigates the performance of three
selected reference point based EMO algorithms, i.e., MOEA/D, NSGA-III and
R-NSGA-II [10], on MOPs with a massively large number of objectives. From
the experimental results, we surprisingly find that R-NSGA-II, which was origi-
nally used to approximate the preferred Pareto-optimal solutions rather than the
entire Pareto-optimal front (PF), shows the most competitive performance. In
contrast, the performance of MOEA/D and NSGA-III deteriorate significantly
with the massively growing number of objectives.

The remainder of this paper is started by a detailed description of the exper-
imental settings of our comparative study in Section 2. Then, Section 3 presents
the discussions of the experimental results. At last, Section 4 summarizes the
main findings and provide an outlook of possible future directions.

2 Experimental Settings

2.1 Benchmark Problems

As a first study, here we use DTLZ1 to DTLZ4 from the widely used DTLZ
suite [11] to form the benchmark set. For each benchmark problem, we consider
the 25-, 50-, 75- and 100-objective cases separately. As for DTLZ1, the number
of decision variables is set as n = m+ 4; and for DTLZ2 to DTLZ4, it is set as
n = m+ 9, where m is the number of objectives.

5 Also known as decomposition-based method, but here we use the terminology refer-
ence point based method without loss of generality.



2.2 Performance Metrics
To have a quantitative comparison of different algorithms, we use the following
two indicators as the performance metrics.
– Convergence Measure (CM):As discussed in [11], the objective functions

of a Pareto-optimal solution x∗ satisfy:
∑m

i=1 fi(x
∗) = 0.5 for DTLZ1 and

∑m

i=1 f
2
i (x

∗) = 1.0 for DTLZ2 to DTLZ4, respectively. Let S be the set of
solutions obtained by an EMO algorithm, and the CM is calculated as:

CM(S) =







∑
x∈S

|
∑

m

i=1
fi(x)−0.5|

|S| , DTLZ1
∑

x∈S
|
∑

m

i=1
f2

i
(x)−1.0|

|S| , DTLZ2 to DTLZ4
(1)

where |S| is the cardinality of S.
– Inverted Generational Distance (IGD) [5]: Let P ∗ be a set of points

uniformly sampled along the PF, and the IGD value of S is calculated as:

IGD(S,P ∗) =

∑

x∗∈P∗ dist(x∗,S)

|P ∗| (2)

where dist(x∗,S) is the Euclidean distance between the point x∗ ∈ P ∗ and
its nearest neighbor of S in the objective space. We use the method developed
in [14] to get the Pareto-optimal samples that form P ∗.

The CMmetric only evaluates the convergence property while the IGD metric
can evaluate both the convergence and diversity simultaneously. The lower are
the CM and IGD metric values, the better is the quality of a solution set for
approximating the PF. Each algorithm is independently run 31 times, and we
use the Wilcoxon’s rank sum test at a 5% significance level to validate the
significance of a better result.

2.3 Examined Reference Point based EMO Algorithms
This paper considers the following three algorithms as the representatives.

– MOEA/D [22]: Its basic idea is to decompose a MOP into several scalariz-
ing subproblems and optimizes them in a collaborative manner. To leverage
the similarity information among neighboring subproblems, the mating se-
lection and population update have a large chance to take place within the
neighborhood. The offspring solution can replace its parent only when it
has a better scalarizing function value for the corresponding subproblem.
In particular, we consider the penalty-based boundary intersection (PBI) as
the scalarizing function [22] in view of its reported superior performance for
many-objective optimization [9]. Formally, the PBI function is defined as:

minimize gPBI(x|w, z∗) = d1 + θd2,
subject to x ∈ Ω,

(3)

where Ω is the feasible region, w is a priori defined weight vector, z∗ is the
ideal objective vector, θ > 0 is a user-defined penalty parameter (here we

set θ = 5.0), d1 = ‖(F(x)−z∗)Tw‖
‖w‖ , d2 = ‖F(x) − (z∗ + d1w)‖ and ‖ · ‖ is the

ℓ2-norm.



– NSGA-III [9]: Its subproblem is defined to achieve the local optimum, in
terms of convergence and diversity, of a subregion specified by the corre-
sponding weight vector. More specifically, each solution is associated with
its closest weight vector according to the perpendicular distance. Afterwards,
the solutions associated with a particular weight vector form a niche. The
survival of a solution is determined by the Pareto dominance relationship
and the crowdedness of a niche. In particular, the ones associated with a less
crowded niche have a larger chance to survive to the next generation.

– R-NSGA-II [10]: It was originally proposed to consider the decision maker’s
(DM’s) preference information into the search process and to approximate
the region of interest (ROI) rather than the entire PF. Specifically, the DM
elicits his/her preference information as one or multiple aspiration level vec-
tors which can be regarded as a discrete approximation of the PF. During
the selection procedure, solutions closer to the given aspiration level vector
have a larger chance to survive to the next generation. To maintain the pop-
ulation diversity, R-NSGA-II employs a ǫ-clearing idea to control the spread
of those selected solutions within the ROI. If we set the aspiration level vec-
tors the same as the weight vectors used in MOEA/D and NSGA-III, we can
expect R-NSGA-II to approximate the entire PF as well.

2.4 Parameter Settings

All EMO algorithms use the simulated binary crossover (SBX) and polynomial
mutation [8] for offspring reproduction. As suggested in [9], the distribution
indices for SBX and polynomial mutation are set to µc = 30 and µm = 30,
respectively. The crossover probability is set to pc = 0.9 and the mutation prob-
ability is set to pm = 1

n
. As suggested in [22], the neighborhood size is set as 20

in MOEA/D, and the probability to select within the neighborhood is set as 0.9.
In addition, the maximum number of replacement of an offspring is set as 2. As
for R-NSGA-II, the ǫ-clearing parameter is set as ǫ = 0.01 as suggested in [10].
The stopping criterion for each algorithm is the predefined number of function
evaluations (FEs). The settings of population size and the maximum number of
FEs for different benchmark problems are given in Table 1. Note that the pop-
ulation size of R-NSGA-II is set twice as that of MOEA/D and NSGA-III. This
is because R-NSGA-II was originally proposed to approximate the ROI where
each aspiration level vector is supposed to hold more than one solution.

Table 1: Settings of population size and maximum number of FEs
m MOEA/D NSGA-III R-NSGA-II Problem ♯ of FEs Problem ♯ of FEs

25 125 128 256 250,000 200,000
50 250 252 500

DTLZ1,3,4
750,000

DTLZ2
600,000

75 375 376 752 1,500,000 1,125,000
100 500 500 1,000 2,500,000 2,000,000

Note that the selection mechanism of a reference point based method mainly
relies on a predefined set of weight vectors. They not only guide the search



direction, and their distribution also determines the population diversity to a
certain extent. The Das and Dennis’s method [6], which samples N =

(

H+m−1
m−1

)

uniformly distributed weight vectors with a uniform space ∆ = 1
H

(H > 0
is the number of divisions considered along each objective coordinate) from a
canonical simplex, is the most popular one for weight vector generation. Al-
though this method works well in the two- or three-objective case, it becomes
impractical when the number of objectives becomes large. As discussed in [14],
in order to have intermediate weight vectors within each edge of the simplex, we
should set H ≥ m. However, even for a 7-objective case, H = 7 will results in
(

7+7−1
7−1

)

= 1, 716 weight vectors. Such large amount of weight vectors obviously
aggregates the computational burden of an EMO algorithm. On the other hand,
if we simply set H < m, all weight vectors will sparsely distribute along the
boundary of the simplex. This is apparently harmful to the population diversity.
To attack this issue, especially when encountering a massively large number of
objectives, the two-layer weight vector generation method suggested in [14] is
a viable resolution. Its basic idea is to make the boundary weight vectors con-
tract inward the simplex by a coordinate transformation. Though it is originally
suggested for generating two layers of weight vectors, it can be generalized to a
multiple-layer case. Suppose that we need to generate σ (σ ≥ 2) layers of weight
vectors. First of all, σ layers of weight vectors (denoted as W k = {wk

1 , · · · ,wk
ℓk
},

where k ∈ {1, · · · ,σ} and ℓk is the number of weight vectors in the k-th layer)
are initialized according to the Das and Dennis’s method, with appropriate H
settings. Afterwards, the coordinates of weight vectors in the inside layer (i.e.,
except the first layer) are shrunk by a coordinate transformation. Specifically,
as for a weight vector in the k-th layer, denoted as wk = (wk

1 , · · · ,wk
m), where

k ∈ {2, · · · , t}, its j-th component is re-evaluated as:

wk
j =

1− τ

m
+ τk × wk

j (4)

where j ∈ {1, · · · ,m} and τk ∈ [0, 1] is the shrinkage factor for the k-th layer.
All σ layers of weight vectors combine to form the final weight vector set W .

Note that one of the major assumptions here is that the uniform distribution
of weight vectors can result in a uniform distribution of the obtained solutions.
But unfortunately, this might not always be guaranteed in a high-dimensional
space, especially when encountering a massively large number of objectives. Let
us consider a 25-objective case, where weight vectors are generated by a five-layer
weight vector generation method as shown in Fig. 1(a). In particular, the shrink-
age factors are τ = {1.0, 0.75, 0.5, 0.25, 0.1} for different layers, respectively. And
for each layer, we set H = 1. Correspondingly, we calculate the Pareto-optimal
samples on the PFs of DTLZ1 and DTLZ2 by using the method introduced
in [14]. From the results shown in Fig. 1(b) and Fig. 1(c) we find that, although
different layers of weight vectors have a uniform scale on the simplex, only the
Pareto-optimal samples of DTLZ1, which has a linear PF shape, have a uni-
form spread over the PF; as for DTLZ2, which has a non-linear PF shape, the
Pareto-optimal samples on the first three layers crowd around the boundary of
the PF. This means that a linear setting of shrinkage factors, which results in a



uniformly scaled weight vector layers, can lead an algorithm to search for a set
of solutions having a biased distribution at the end. Obviously, this is harmful
to the population diversity. Even worse, it aggravates with the increase of the
number of objectives. To alleviate this side effect, here we suggest setting the
shrinkage factors in a non-linear manner, according to Proposition 1.
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(a) Distribution of weight
vectors.
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(b) Pareto-optimal samples
on DTLZ1.
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(c) Pareto-optimal samples
on DTLZ2.

Fig. 1: Linear τ setting, i.e., τ = {1.0, 0.75, 0.5, 0.25, 0.1}, and their corresponding
Pareto-optimal samples on PFs of 25-objective DTLZ1 (linear PF) and DTLZ2
(non-linear PF), respectively.

Proposition 1. For DTLZ2 to DTLZ4, suppose the expected objective value is

f , the appropriate shrinkage factor should be set as the positive τ :

τ =
−b±

√
b2 − 4ac

2a
(5)

where a = (f2 − 1)m2 − (f2 − 2)m− 3, b = −2(m− 1) and c = f2m− 1.

Proof. Let us use a simple example to prove this proposition. Suppose an extreme
weight vector w = (w1, · · · ,wm)T is set as: wi = 1.0 and wj = 0.0 where
j ∈ {1, · · · ,m} and j 6= i. By using the weight vector transformation method
introduced in equation (4), we can have the corresponding transformed weight
vector as:

wi =
1− τ

m
+ τ × wi,wj =

1− τ

m
, ∀j ∈ {1, · · · ,m}, j 6= i (6)

According to [14], the i-th objective value on the PF of DTLZ2 is calculated as:

fi(x) =
wi

√
∑m

k=1 w
2
k

=
1−τ
m

+ τ × wi
√

∑m−1
k=1 (1−τ

m
)2 + (1−τ

m
+ τ × wi)2

=
1−τ
m

+ τ × wi
√

(m− 1)(1−τ
m

)2 + (1−τ
m

+ τ × wi)2

(7)



Let t = fi(x)
2, we can have:

(1−τ
m

+ τ × wi)
2

√

(m− 1)(1−τ
m

)2 + (1−τ
m

+ τ × wi)2
= t

=⇒ (t− 1)(
1− τ

m
+ τ)2 + t(m− 1)(

1− τ

m
)2 = 0

=⇒ [(t− 1)m2 − (t− 2)m− 3]τ2 − 2(m− 1)τ + (tm− 1) = 0

(8)

Let a = [(t−1)m2− (t−2)m−3], b = 2(m−1), c = (tm−1), the above equation
thus can be treated as a quadratic equation with τ as the unknown. Accordingly,
this equation can be solved as:

τ =
−b±

√
b2 − 4ac

2a
(9)

Obviously, the appropriate τ for the weight vector transformation purpose should
be a positive number, i.e., the positive solution of equation (9).

Based on Proposition 1, we change the shrinkage factor setting of the example
shown in Fig. 1 as τ = {1.0, 0.2, 0.125, 0.08, 0.03}. As shown in Fig. 2, by using
this τ setting, we can have a better spread of Pareto-optimal samples than using
the linearly scaled τ setting. In our experiments, we use the 5-layer weight vector
generation method suggested in this subsection to generate initial weight vectors.
In particular, we set τ = {1.0, 0.75, 0.5, 0.25, 0.1} for the DTLZ1 problem and
τ = {1.0, 0.2, 0.125, 0.08, 0.03} for the DTLZ2 to DTLZ4 problems.
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(a) Distribution of weight vectors.
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(b) Pareto-optimal samples on DTLZ2.

Fig. 2: Non-linear τ setting, i.e., τ = {1.0, 0.2, 0.125, 0.08, 0.03}, and their corre-
sponding Pareto-optimal samples on the PF of 25-objective DTLZ2.



3 Experimental Results

3.1 Comparison Results of MOEA/D, NSGA-III and R-NSGA-II

The CM and IGD metric values obtained by different algorithms are presented
in Table 2. The best metric value is highlighted in bold face with a gray back-
ground. In Fig. 3, we plot the trajectories of the mean metric values obtained
by different algorithms versus different number of objectives. To have a visual
comparison, we show the parallel coordinate plot of the population holding the
best IGD value for each algorithm6.

From the experimental results, in terms of the IGD metric values and the
parallel coordinate plots shown in the supplementary file, we find that R-NSGA-
II is the best candidate on all benchmark problem instances. In particular, the
solutions found by R-NSGA-II almost converge to the PF, and they well approx-
imate the expected points on the PF. In contrast, the performance of NSGA-III
is not satisfactory. Its performance deteriorates significantly with the growing
number of objectives. For NSGA-III, the most direct effect from the curse of di-
mensionality is the convergence where NSGA-III can hardly drive the solutions
fully converge to the PF on problems with the multi-modal property, e.g., DTLZ1
and DTLZ3. Although DTLZ4 does not have local PFs in its search space, its
parametric mapping, which causes a biased density of solutions, impairs the se-
lection pressure of NSGA-III and thus makes the solutions be drifted. As for
MOEA/D, we observe a very decent performance on the CM metric. However,
we also notice that the IGD metric values obtained by MOEA/D are not very
competitive. From the parallel coordinate plots shown in the supplementary file,
we find that although the solutions obtained by MOEA/D converge to the PF,
they crowd on a narrow region. This means that MOEA/D fails to approximate
the entire PF and thus explains its poor IGD metric values. It is interesting
to note that the CM metric values obtained by MOEA/D are improved with
the growth of the dimensionality, while their IGD metric values deteriorate ac-
cordingly. This might imply that diversity preservation becomes more different
by increasing the number of objectives. In this case, most of the computational
budgets in MOEA/D have been devoted to several selected weight vectors, thus
results in a biased distribution in a high-dimensional space.

3.2 Further Discussions

In principle, the ultimate goal of these reference point based EMO algorithms is
to find the appropriate solutions for each weight vector. Putting the algorithmic
implementations aside, the key differences among them lie in their distance mea-
sures. To facilitate the illustration, let us consider the examples shown in Fig. 4.
In particular, we connect a weight vector and the origin to form a reference line.

– MOEA/D uses an aggregated distance measure which adds the perpendicular
distance between a solution and the reference line to the distance between
the ideal point and the projection of a solution onto the reference line.

6 Due to the page limit, the parallel coordinate plots are put in the supplementary file,
which can be found in https://coda-group.github.io/publications/suppEMO.pdf.
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Table 2: Comparison Results on the CM and IGD Metric
CM

Problem m MOEA/D NSGA-III R-NSGA-II Generative Method s

25 4.634E-3(2.01E-3) 8.775E-2(1.52E-1) 2.768E-2(9.88E-3) 3.807E+1(1.70E+0) †

DTLZ1
50 3.877E-3(1.82E-3) 2.594E+0(5.01E+0) 3.781E-2(4.36E-3) 3.871E+1(1.03E+0) †
75 1.848E-3(5.23E-4) 2.529E+1(9.89E+0) 6.762E-2(1.86E-2) 3.891E+1(1.68E+0) †
100 1.612E-3(8.15E-4) 2.985E+1(8.50E+0) 1.259E-1(1.74E-2) 3.907E+1(1.12E+0) †
25 4.425E-3(9.51E-4) 5.719E-2(3.65E-2) 1.262E-3(3.26E-4) 4.613E-5(4.63E-5) †

DTLZ2
50 3.046E-3(3.30E-4) 5.497E-2(1.38E-2) 7.431E-4(1.34E-4) 1.599E-3(1.19E-3) †
75 2.722E-3(5.68E-4) 6.992E-2(2.71E-2) 5.566E-4(6.01E-5) 2.058E-3(1.49E-3) †
100 1.548E-3(6.60E-4) 1.191E-1(3.55E-2) 3.918E-4(6.01E-5) 9.883E-4(3.56E-4) †
25 2.478E-2(2.32E-2) 1.573E+3(1.79E+3) 3.068E-3(2.96E-3) 1.065E+4(5.06E+2) †

DTLZ3
50 1.775E-2(1.89E-2) 7.793E+3(1.09E+3) 4.667E-4(3.71E-4) 1.038E+4(2.53E+2) †
75 4.263E-3(8.83E-3) 2.162E+4(1.40E+4) 1.577E-4(5.21E-5) 1.051E+4(1.29E+2) †
100 6.794E-5(3.67E-5) 3.292E+4(1.43E+4) 8.730E-5(2.78E-5) 1.059E+4(2.08E+2) †
25 2.974E-3(4.26E-3) 7.520E+1(1.18E+2) 1.068E-3(1.77E-4) 1.074E-5(2.28E-5) †

DTLZ4
50 9.323E-4(8.35E-4) 9.869E+2(6.54E+2) 6.911E-4(7.58E-5) 1.011E-3(1.07E-3) †
75 2.909E-4(8.20E-5) 3.919E+3(2.52E+3) 5.144E-4(7.93E-5) 6.689E-4(4.05E-4) †
100 2.617E-4(1.36E-4) 2.798E+3(1.23E+3) 3.317E-4(7.02E-5) 6.086E-4(2.41E-4) †

IGD
25 1.830E-1(9.51E-4) 1.514E-1(2.33E-2) 1.059E-1(4.41E-3) 2.460E-1(8.35E-3) †

DTLZ1
50 1.848E-1(1.72E-3) 2.335E-1(6.07E-2) 8.388E-2(1.00E-3) 2.588E-1(3.26E-3) †
75 1.848E-1(8.79E-4) 2.839E-1(9.27E-3) 7.981E-2(3.22E-3) 2.708E-1(1.50E-3) †
100 1.846E-1(4.72E-4) 2.643E-1(1.20E-2) 7.585E-2(7.28E-3) 2.731E-1(2.76E-3) †
25 2.110E-1(7.58E-3) 2.643E-1(1.20E-2) 1.391E-1(3.04E-3) 2.368E-2(5.22E-3) †

DTLZ2
50 2.557E-1(4.47E-3) 2.207E-1(4.94E-2) 1.769E-1(1.61E-3) 4.934E-1(1.55E-2) †
75 2.654E-1(2.67E-2) 2.247E-1(2.57E-2) 1.986E-1(2.24E-3) 8.294E-1(1.80E-2) †
100 3.993E-1(2.95E-1) 2.374E-1(2.97E-2) 2.108E-1(1.21E-3) 9.565E-1(1.29E-2) †
25 6.798E-1(5.27E-1) 2.974E+0(1.30E+0) 1.405E-1(2.74E-3) 6.612E-1(9.61E-2) †

DTLZ3
50 7.958E-1(5.60E-1) 1.695E+0(1.01E+0) 1.795E-1(5.74E-3) 8.573E-1(4.81E-2) †
75 1.136E+0(4.65E-1) 1.159E+0(6.99E-2) 1.978E-1(3.57E-3) 1.048E+0(2.54E-2) †
100 1.349E+0(3.74E-2) 1.134E+0(5.06E-2) 2.118E-1(5.77E-3) 1.139E+0(1.04E-2) †
25 5.966E-1(8.10E-2) 7.935E-1(3.13E-2) 1.358E-1(2.37E-3) 2.013E-1(1.20E-2) †

DTLZ4
50 6.047E-1(7.11E-2) 8.596E-1(2.58E-2) 1.731E-1(2.13E-3) 3.911E-1(7.80E-3) †
75 6.058E-1(7.41E-2) 8.775E-1(1.91E-2) 1.926E-1(3.70E-3) 7.414E-1(1.30E-2) †
100 6.081E-1(6.99E-2) 8.744E-1(1.24E-2) 2.061E-1(3.54E-3) 8.871E-1(1.42E-2) †

Wilcoxon’s rank sum test at a 5% significance level is performed between the best metric value
and others. † denotes the best mean metric value is significantly better than all other peers.
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Fig. 3: Trajectories of CM and IGD values on different problems.



– NSGA-III only uses the perpendicular distance between a solution and the
reference line as the criterion in its niching process.

– R-NSGA-II uses the direct Euclidean distance between a solution and the
DM specified aspiration level vector, i.e., the weight vector, as the secondary
selection criterion additional to the Pareto dominance.

The experimental results discussed in Section 3.1 provides us an impression that
the reference point based methods can be viable for handling MOPs with a
massively large number of objectives given the use of a proper distance measure.
The superior performance obtained by R-NSGA-II demonstrate that the direct
Euclidean distance is the best choice, which might be unexpected at the first
glance. The incorporation of the perpendicular distance between a solution and
a reference line may help maintain the population diversity, but it may also
impair the selection pressure towards the PF.

From another perspective, each weight vector used in R-NSGA-II plays as
the DM supplied preference information relating to a particular region of the PF,
i.e., the ROI. Accordingly, the use of a set of weight vectors not only implies the
prior assumption of the geometrical characteristics of the PF, but also can be
regarded as its discrete approximation. To a certain extent, the approximation
of each ROI plays as a reduction of the originally huge objective space; while
R-NSGA-II uses a population-based technique to approximate a set of a priori
defined ROIs in a parallel and collaborative manner.
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Fig. 4: Comparisons of different distance measures.

3.3 Comparison with the Classical Generative Method

From the experimental results discussed in Section 3.1, we find that the reference
point based EMO methods, in particular R-NSGA-II, are capable of handling
MOPs with a massively large number of objectives. As discussed in Section 3.2,
the reference point based EMO methods use a set of predefined weight vectors,
either supplied by the DM or systematically constructed, to guide the search
process and to approximate a set of Pareto-optimal solutions in a single simu-
lation run. However, the classical generative multi-criterion optimization meth-
ods [18] repeatedly solve a parameterized single-objective problem might achieve



the same effect. Due to lack of parallelism, some studies [9] have reported that
the classical generative methods might not be as efficient as the EMO methods.
One may ponder whether a classical generative method can have a similar or
even better performance than the EMO methods when tackling MOPs with a
massively large number of objectives? For this purpose, we formulate a scalar-
ized single-objective optimization problem for each weight vector in the following
form:

minimize ASF(x|z∗,w) = max
1≤j≤m

(

fi(x)−z∗

i

wi

)

,

subject to x ∈ Ω,
(10)

where z∗ is an ideal objective vector. In this paper, we set z∗ to be the origin for
simplicity. As discussed in some recent studies [9, 16, 17], the optimal solution of
the above optimization problem is the intersecting point of the reference direction
of the corresponding weight vector and the PF. To make a fair comparison, for
each weight vector, we allocate a maximum of T = FEmax/N (where FEmax is
the total number of FEs suggested in Table 1 and N is the population size used
by MOEA/D as suggested in Table 1, i.e., the number of weight vectors) FEs
to its corresponding optimization procedure. In particular, each optimization
procedure is run by the fmincon routine of MATLAB, where a random solution
is used for initialization.

The classical generative method is run 31 independent times with different
random seeds and the comparative results of the CM and IGD metric values are
presented in Table 2 as well. In the supplementary file, we also plot the parallel
coordinate plots of solutions which obtain the best IGD value in the correspond-
ing benchmark problem instance. Due to the existence of many local PFs, the
classical generative method cannot find any Pareto-optimal solution within the
allocated number of FEs. Its poor convergence performance is also reflected by
the large CM metric values shown in Table 2. It is also interesting to note that
the differences of IGD values obtained by NSGA-III and the classical generative
method become small with the growth of dimensionality. Comparing the parallel
coordinate plots of NSGA-III and the classical generative method, we find that
both methods cannot find any meaningful solution on 50-, 75- and 100-objective
DTLZ1 instances. As for the DTLZ2 problem, the classical generative method
obtains the best CM metric value on all 25- to 100-objective scenarios. As shown
in the parallel coordinate plots, the classical generative method almost obtains
a perfect PF approximation on the 25-objective DTLZ2 problem instance. Ac-
cordingly, its IGD value is the best comparing to the other three reference point
based EMO algorithms. However, the performance of the classical generative
method deteriorates significantly with the growth of dimensionality. Although
the solutions obtained by the classical generative method almost converge to the
PF on the 50-, 75- and 100-objective scenarios, they all bias towards a particular
region. This is reflected by its poor IGD metric values. Similar to the DTLZ1
problem, DTLZ3 is also featured by multi-modality. Solutions found by the clas-
sical generative method are obviously far away from the PF. However, they seem
to have a better spread than those obtained by NSGA-III. Accordingly, the IGD
values obtained by the classical generative method are better than NSGA-III.



DTLZ4 is featured by its biased distribution. The classical generative method
seems to have a relatively acceptable approximation to the PF on the 25- and
50-objective scenarios. This is reflected by its second best IGD metric values.
However, with the growth of dimensionality, solutions found by the classical
generative method have a obvious bias towards certain objectives.

From the experimental results discussed in this section, we find that the
classical generative method is able to have a comparable or even better perfor-
mance than the reference point based EMO methods when tackling MOPs with
a massively large number of objectives without many local optima. However,
with the growth of dimensionality and when the problem becomes complicated,
the classical generative method can hardly find any meaningful solution as well.

3.4 Multiple-Solution Strategy

All these reference point based EMO algorithms give a high survival rate to the
solutions close to the corresponding weight vector. As discussed in Section 3.2,
one of their major differences is the method for measuring the distance between a
solution and a weight vector. Besides, in R-NSGA-II, each weight vector can hold
two or more solutions at once, whereas in MOEA/D and NSGA-III, each weight
vector is only allowed to accommodate one solution. One may ponder whether
the performance of MOEA/D and NSGA-III can be improved in case each weight
vector is allowed to hold more than one solution? Bearing this consideration in
mind, we make some modifications on the selection mechanisms of MOEA/D
and NSGA-III. More specifically, for MOEA/D, each weight vector is assigned
two solutions that hold the current best aggregation function values. In addition,
the assigned solutions of a particular weight vector have an equal opportunity to
participate the mating selection and the update procedure. For NSGA-III, the
niche preservation operation is performed in case the niche count of a particular
weight vector is greater than two.

The parameters of MOEA/D and NSGA-III are set the same as described
in Section 2.4, except the population size and the maximum number of FEs. In
particular, the population size is doubled, while the maximum number of FEs
is reduced by half accordingly. The CM and IGD metric values are presented
in Table 3. In particular, MOEA/D and NSGA-III with a doubled population
size are denoted as MOEA/D∆ and NSGA-III∆ respectively. From the exper-
imental results, we clearly observe the performance improvement, in terms of
convergence and diversity, after doubling the population size. Since each weight
vector is able to hold at least two candidates simultaneously, we can expect an
improvement on the population diversity. In the meanwhile, due to the existence
of more than one candidate associated with a weight vector, we can also expect
an enhanced selection pressure towards the PF within a local niche. From the
parallel coordinate plots shown in the supplementary file, we find that the solu-
tions obtained by MOEA/D∆ and NSGA-III∆ have a better convergence than
those obtained by MOEA/D and NSGA-III. Nevertheless, we also observe that
the IGD metric values obtained by R-NSGA-II are still better than MOEA/D∆



and NSGA-III∆. This further implies the importance of the use of an appropriate
distance measure.

Table 3: Comparison Results on the CM and IGD Metrics
CM

Problem m MOEA/D∆ MOEA/D NSGA-III∆ NSGA-III R-NSGA-II s

25 2.675E-3(1.18E-3) 4.634E-3(2.01E-3) 3.568E-3(1.81E-3) 8.775E-2(1.52E-1) 2.768E-2(9.88E-3) †

DTLZ1
50 8.160E-4(4.99E-4) 3.877E-3(1.82E-3) 1.699E-2(2.73E-2) 2.594E+0(5.01E+0) 3.781E-2(4.36E-3) †
75 6.541E-4(4.07E-4) 1.848E-3(5.23E-4) 6.985E-2(3.75E-2) 2.529E+1(9.89E+0) 6.762E-2(1.86E-2) †
100 5.044E-4(4.44E-4) 1.612E-3(8.15E-4) 6.985E-2(3.75E-2) 2.985E+1(8.50E+0) 1.259E-1(1.74E-2) †
25 2.952E-3(7.58E-4) 4.425E-3(9.51E-4) 2.509E-2(1.33E-3) 5.719E-2(3.65E-2) 1.262E-3(3.26E-4) †

DTLZ2
50 2.133E-3(4.23E-4) 3.046E-3(3.30E-4) 1.557E-2(9.26E-3) 5.497E-2(1.38E-2) 7.431E-4(1.34E-4) †
75 1.932E-3(3.59E-4) 2.722E-3(5.68E-4) 1.154E-2(2.92E-3) 6.992E-2(2.71E-2) 5.566E-4(6.01E-5) †
100 1.527E-3(2.95E-4) 1.548E-3(6.60E-4) 3.858E-2(2.93E-3) 1.191E-1(3.55E-2) 3.918E-4(6.01E-5) †
25 2.335E-2(8.86E-3) 2.478E-2(2.32E-2) 4.796E-1(2.84E-1) 1.573E+3(1.79E+3) 3.068E-3(2.96E-3) †

DTLZ3
50 1.511E-2(1.71E-2) 1.775E-2(1.89E-2) 3.412E-1(1.10E-1) 7.793E+3(1.09E+3) 4.667E-4(3.71E-4) †
75 1.790E-3(5.62E-3) 4.263E-3(8.83E-3) 3.831E-1(1.10E-1) 2.162E+4(1.40E+4) 1.577E-4(5.21E-5) †
100 3.508E-6(4.20E-6) 6.794E-5(3.67E-5) 3.998E-1(1.95E-1) 3.292E+4(1.43E+4) 8.730E-5(2.78E-5) †
25 6.654E-6(1.97E-5) 2.974E-3(4.26E-3) 1.46E-2(4.11E-3) 7.520E+1(1.18E+2) 1.068E-3(1.77E-4) †

DTLZ4
50 9.553E-7(6.82E-7) 9.323E-4(8.35E-4) 1.776E-2(4.10E-3) 9.869E+2(6.54E+2) 6.911E-4(7.58E-5) †
75 7.167E-7(4.48E-7) 2.909E-4(8.20E-5) 1.802E-2(4.02E-3) 3.919E+3(2.52E+3) 5.144E-4(7.93E-5) †
100 5.007E-7(4.50E-7) 2.617E-4(1.36E-4) 1.867E-2(3.95E-3) 2.798E+3(1.23E+3) 3.317E-4(7.02E-5) †

IGD
25 1.166E-1(6.96E-4) 1.830E-1(9.51E-4) 1.204E-1(5.45E-3) 1.514E-1(2.33E-2) 1.059E-1(4.41E-3) †

DTLZ1
50 1.208E-1(6.94E-5) 1.848E-1(1.72E-3) 1.502E-1(1.14E-2) 2.335E-1(6.07E-2) 8.388E-2(1.00E-3) †
75 1.308E-1(7.51E-4) 1.848E-1(8.79E-4) 2.056E-1(1.47E-2) 2.839E-1(9.27E-3) 7.981E-2(3.22E-3) †
100 1.414E-1(8.55E-5) 1.846E-1(4.72E-4) 3.587E-1(1.35E-1) 2.643E-1(1.20E-2) 7.585E-2(7.28E-3) †
25 3.442E-1(6.22E-4) 2.110E-1(7.58E-3) 1.026E+0(3.90E-2) 2.643E-1(1.20E-2) 1.391E-1(3.04E-3) †

DTLZ2
50 4.313E-1(6.62E-4) 2.557E-1(4.47E-3) 1.178E+0(2.30E-2) 2.207E-1(4.94E-2) 1.769E-1(1.61E-3) †
75 4.611E-1(1.27E-3) 2.654E-1(2.67E-2) 1.225E+0(1.88E-2) 2.247E-1(2.57E-2) 1.986E-1(2.24E-3) †
100 4.926E-1(2.73E-3) 3.993E-1(2.95E-1) 1.276E+0(1.29E-2) 2.374E-1(2.97E-2) 2.108E-1(1.21E-3) †
25 3.492E-1(8.21E-4) 6.798E-1(5.27E-1) 8.748E-1(1.45E-1) 2.974E+0(1.30E+0) 1.405E-1(2.74E-3) †

DTLZ3
50 8.674E-1(4.57E-1) 7.958E-1(5.60E-1) 8.528E-1(4.45E-2) 1.695E+0(1.01E+0) 1.795E-1(5.74E-3) †
75 1.070E+0(4.14E-1) 1.136E+0(4.65E-1) 8.610E-1(3.96E-2) 1.159E+0(6.99E-2) 1.978E-1(3.57E-3) †
100 1.255E+0(2.63E-1) 1.349E+0(3.74E-2) 8.844E-1(5.03E-2) 1.134E+0(5.06E-2) 2.118E-1(5.77E-3) †
25 6.909E-1(4.57E-2) 5.966E-1(8.10E-2) 3.327E-1(9.74E-4) 7.935E-1(3.13E-2) 1.358E-1(2.37E-3) †

DTLZ4
50 6.917E-1(2.83E-2) 6.047E-1(7.11E-2) 4.221E-1(1.52E-3) 8.596E-1(2.58E-2) 1.731E-1(2.13E-3) †
75 6.703E-1(3.32E-2) 6.058E-1(7.41E-2) 4.678E-1(2.32E-3) 8.775E-1(1.91E-2) 1.926E-1(3.70E-3) †
100 6.850E-1(3.60E-2) 6.081E-1(6.99E-2) 5.398E-1(2.63E-3) 8.744E-1(1.24E-2) 2.061E-1(3.54E-3) †

Wilcoxon’s rank sum test at a 5% significance level is performed between the best metric value
and others. † denotes the best mean metric value is significantly better than all other peers.

4 Conclusions and Future Directions

In this paper, we conduct a series of experiments that investigate the perfor-
mance of three selected reference point based EMO methods on MOPs with a
massively large number of objectives. From the experimental studies, we find
that R-NSGA-II, originally proposed to search for the ROIs, shows very com-
petitive and robust performance when handling problems with a massively large
number of objectives. We attribute the success of R-NSGA-II to two aspects:
1) since each weight vector is able to hold more than one solution, a stronger
selection pressure can be expected in the local niche; 2) the appropriate distance
measure plays an important role in the selection criterion design of the reference
point based EMO methods.

We admit that the results observed in this paper might not be conclusive,
since we only focus on the reference point based EMO methods. Future research
will deepen the insights in the behavior of more types of EMO methods, i.e.,
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Fig. 5: Trajectories of CM and IGD values on different problems.

the Pareto- and indicator-based EMO methods. However, with a massively large
number of objectives, the computational overheads for calculating the Hyper-
volume metric, which is the most popular metric used in the indicator-based
EMO method, might become practically infeasible for the scalability studies. As
for the Pareto-based method, we suspect that they might have some troubles to
drive the population in a massively high dimensional search space without any
direction information provided by the weight vectors. Furthermore, the bench-
mark problems considered in this paper are relatively less challenging. In our
follow-up work, we will test the performance on a wider range of and more com-
plicated benchmark problems. In addition, statistically guided parameter studies
will be performed to figure out the suitable parameterizations for different EMO
algorithms.
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