40 research outputs found

    Microwave Imaging of Defects in Graphite Reinforced Composite Materials

    Get PDF
    In an effort to develop and evaluate new non-destructive evaluation (NDE) techniques for resin-matrix composites, we have investigated the feasibility of utilizing electromagnetic imaging for materials evaluation and has demonstrated the ability of existing electromagnetic imaging techniques to detect and locate flaws within carbon-epoxy samples. This paper presents the technical issues associated with using electromagnetic imaging for NDE measurements. These include the selection of test frequencies, sample orientation, signal processing techniques, and the impact of material properties on the measurement results. Measured results are presented for carbon-epoxy material samples

    Minimal structural requirements of alkyl γ-lactones capable of antagonizing the cocaine-induced motility decrease in planarians

    Get PDF
    We recently reported that the natural cyclic lactone, parthenolide, and related analogs prevent the expression of behavioral effects induced by cocaine in planarians and that parthenolide’s γ-lactone ring is required for this effect. In the present work, we tested a series of alkyl γ-lactones with varying chain length (1–8 carbons) to determine their ability to antagonize the planarian motility decrease induced by 200 μM cocaine. Alkyl lactones with up to a 4-carbon alkyl chain did not affect planarian motility or antagonized the cocaine-induced motility decrease; only the compound γ-nonalactone (a γ-lactone with a 5-carbon chain) was able to prevent the cocaine-induced behavioral patterns, while alkyl lactones with longer carbon chains failed to prevent the cocaineinduced effects. Thus, we conclude that the optimal structural features of this family of compounds to antagonize cocaine’s effect in this experimental system is a γ-lactone ring with at a 5-carbon long functional group

    Integrated orbital servicing study for low-cost payload programs. Volume 2: Technical and cost analysis

    Get PDF
    Orbital maintenance concepts were examined in an effort to determine a cost effective orbital maintenance system compatible with the space transportation system. An on-orbit servicer maintenance system is recommended as the most cost effective system. A pivoting arm on-orbit servicer was selected and a preliminary design was prepared. It is indicated that orbital maintenance does not have any significant impact on the space transportation system

    Cotinine antagonizes the behavioral effects of nicotine exposure in the planarian Girardia tigrina

    Get PDF
    Nicotine is one of the most addictive drugs abused by humans. Our laboratory and others have demonstrated that nicotine decreases motility and induces seizure-like behavior in planarians (pSLM, which are vigorous writhing and bending of the body) in a concentration-dependent manner. Nicotine also induces withdrawal-like behaviors in these worms. Cotinine is the major nicotine metabolite in humans, although it is not the final product of nicotine metabolism. Cotinine is mostly inactive in vertebrate nervous systems and is currently being explored as a molecule which possess most of nicotine’s beneficial effects and few of its undesirable ones. It is not known whether cotinine is a product of nicotine metabolism in planarians. We found that cotinine by itself does not seem to elicit any behavioral effects in planarians up to a concentration of 1 mM. We also show that cotinine antagonizes the aforementioned nicotine-induced motility decrease and also decreases the expression of nicotine-induced pSLMs in a concentration-dependent manner. Also cotinine prevents the manifestation of some of the withdrawal-like behaviors induced by nicotine in our experimental organism. Thus, we obtained evidence supporting that cotinine antagonizes nicotine in this planarian species. Possible explanations include competitive binding of both compounds at overlapping binding sites, at different nicotinic receptor subtypes, or maybe allosteric interactions

    Planarians require an intact brain to behaviorally react to cocaine, but not to react to nicotine

    Get PDF
    Planarians possess a rudimentary brain with many features in common with vertebrate brains. They also display a remarkable capacity for tissue regeneration including the complete regeneration of the nervous system. Using the induction of planarian seizure-like movements (pSLMs) as a behavioral endpoint, we demonstrate that an intact nervous system is necessary for this organism to react to cocaine exposure, but not necessary to react to nicotine administration. Decapitated planarians (Girardia tigrina) display pSLMs indistinguishable from intact worms when exposed to nicotine, but cocaine-induced pSLMs are reduced by about 95% upon decapitation. Decapitated worms recover their normal sensitivity to cocaine within five days after head amputation. In worms where half of the brain was removed or partially dissected, the expression of cocaine-induced pSLMs was reduced by approximately 75 %. Similar amputations at the level of the tail did not show a significant decrease to cocaine exposure. To the best of our knowledge, our work is the first report that explores how regenerating planarians react to the exposure of cocaine

    Measuring functional brain recovery in regenerating planarians by assessing the behavioral response to the cholinergic compound cytisine

    Get PDF
    Planarians are traditional model invertebrates in regeneration and developmental biology research that also display a variety of quantifiable behaviors useful to screen for pharmacologically active compounds. One such behavior is the expression of seizure-like movements (pSLMs) induced by a variety of substances. Previous work from our laboratory showed that cocaine, but not nicotine, induced pSLMs in intact but not decapitated planarians. Interestingly, as decapitated planarians regenerated their heads, they gradually recovered their sensitivity to cocaine. These results suggested a method to assess planarian brain regeneration and a possible way of identifying compounds that could enhance or hold back brain regeneration. In the present work, we demonstrate that the cholinergic agent cytisine is a suitable reference compound to apply our method. Cytisine induces pSLMs in a concentration-dependent manner in intact (but not decapitated) planarians of the species Girardia tigrina. Based on our data, we developed a behavioral protocol to assess planarian brain regeneration over time. We tested this method to measure the effect of ethanol on G. tigrina’s brain regeneration. We found that ethanol slows down the rate of planarian brain regeneration in a concentration-dependent manner, consistently with data from other research groups that tested ethanol effects on planarian brain regeneration using different behavioral protocols. Thus, here we establish a general method using cytisine-induced pSLMs as an indicator of brain regeneration in planarians, a method that shows potential for assessing the effect of pharmacologically active compounds in this process

    Planarians in pharmacology: parthenolide is a specific behavioral antagonist of cocaine in the planarian Girardia tigrina

    Get PDF
    Planarians are traditional animal models in developmental and regeneration biology. Recently, these organisms are arising as vertebrate-relevant animal models in neuropharmacology. Using an adaptation of published behavioral protocols, we have described the alleviation of cocaine-induced planarian seizure-like movements (pSLM) by a naturally-occurring sesquiterpene lactone, parthenolide. Interestingly, parthenolide does not prevent the expression of pSLM induced by amphetamines; in vertebrates, amphetamines interact with the same protein target as cocaine. Parthenolide is also unable to prevent pSLM elicited by the cholinergic compounds nicotine and cytisine or by the glutamatergic agents L- or D- glutamic acid or NMDA. Thus, we conclude that parthenolide is a specific anti-cocaine agent in this experimental organism

    Repurposing rapid diagnostic tests to detect falsified vaccines in supply chains

    Get PDF
    Substandard (including degraded) and falsified (SF) vaccines are a relatively neglected issue with serious global implications for public health. This has been highlighted during the rapid and widespread rollout of COVID-19 vaccines. There has been increasing interest in devices to screen for SF non-vaccine medicines including tablets and capsules to empower inspectors and standardise surveillance. However, there has been very limited published research focussed on repurposing or developing new devices for screening for SF vaccines. To our knowledge, rapid diagnostic tests (RDTs) have not been used for this purpose but have important potential for detecting falsified vaccines. We performed a proof-in-principle study to investigate their diagnostic accuracy using a diverse range of RDT-vaccine/falsified vaccine surrogate pairs. In an initial assessment, we demonstrated the utility of four RDTs in detecting seven vaccines. Subsequently, the four RDTs were evaluated by three blinded assessors with seven vaccines and four falsified vaccines surrogates. The results provide preliminary data that RDTs could be used by multiple international organisations, national medicines regulators and vaccine manufacturers/distributors to screen for falsified vaccines in supply chains, aligned with the WHO global ‘Prevent, Detect and Respond’ strategy

    Innovative method for rapid detection of falsified COVID-19 vaccines through unopened vials using handheld Spatially Offset Raman Spectroscopy (SORS)

    Get PDF
    Preventing, detecting, and responding to substandard and falsified vaccines is of critical importance for ensuring the safety, efficacy, and public trust in vaccines. This is of heightened importance in context of public health crisis, such as the COVID-19 pandemic, in which extreme world-wide shortages of vaccines provided a fertile ground for exploitation by falsifiers. Here, a proof-of-concept study explored the feasibility of using a handheld Spatially Offset Raman Spectroscopy (SORS) device to authenticate COVID-19 vaccines through rapid analysis of unopened vaccine vials. The results show that SORS can verify the chemical identity of dominant excipients non-invasively through vaccine vial walls. The ability of SORS to identify potentially falsified COVID-19 vaccines was demonstrated by measurement of surrogates for falsified vaccines contained in vaccine vials. In all cases studied, the SORS technique was able to differentiate between surrogate samples from the genuine COVISHIELDâ„¢ vaccine. The genuine vaccines tested included samples from six batches across two manufacturing sites to account for any potential variations between batches or manufacturing sites. Batch and manufacturing site variations were insignificant. In conjunction with existing security features, for example on labels and packaging, SORS provided an intrinsic molecular fingerprint of the dominant excipients of the vaccines. The technique could be extended to other COVID-19 and non-COVID-19 vaccines, as well as other liquid medicines. As handheld and portable SORS devices are commercially available and widely used for other purposes, such as airport security, they are rapidly deployable non-invasive screening tools for vaccine authentication.</p

    Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment

    Get PDF
    Background. The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patientreported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts.Methods. Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria.Results. The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P&lt;.05). There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres (P&lt;.05), as well as smaller brain volumes (P&lt;.01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker.Conclusion. Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer selfreported health status. This may be due to the statistical advantage of using a multivariate approach
    corecore