846 research outputs found
Estimates of Alpha/Beta (alpha/beta) Ratios for Individual Late Rectal Toxicity Endpoints: An Analysis of the CHHiP Trial
Purpose: Changes in fraction size of external beam radiation therapy exert nonlinear effects on subsequent toxicity. Commonly described by the linear-quadratic model, fraction size sensitivity of normal tissues is expressed by the α/β ratio. We sought to study individual α/β ratios for different late rectal effects after prostate external beam radiation therapy. Methods and Materials: The CHHiP trial (ISRCTN97182923) randomized men with nonmetastatic prostate cancer 1:1:1 to 74 Gy/37 fractions (Fr), 60 Gy/20 Fr, or 57 Gy/19 Fr. Patients in the study had full dosimetric data and zero baseline toxicity. Toxicity scales were amalgamated to 6 bowel endpoints: bleeding, diarrhea, pain, proctitis, sphincter control, and stricture. Lyman-Kutcher-Burman models with or without equivalent dose in 2 Gy/Fr correction were log-likelihood fitted by endpoint, estimating α/β ratios. The α/β ratio estimate sensitivity was assessed using sequential inclusion of dose modifying factors (DMFs): age, diabetes, hypertension, inflammatory bowel or diverticular disease (IBD/diverticular), and hemorrhoids. 95% confidence intervals (CIs) were bootstrapped. Likelihood ratio testing of 632 estimator log-likelihoods compared the models. Results: Late rectal α/β ratio estimates (without DMF) ranged from bleeding (G1 + α/β = 1.6 Gy; 95% CI, 0.9-2.5 Gy) to sphincter control (G1 + α/β = 3.1 Gy; 95% CI, 1.4-9.1 Gy). Bowel pain modelled poorly (α/β, 3.6 Gy; 95% CI, 0.0-840 Gy). Inclusion of IBD/diverticular disease as a DMF significantly improved fits for stool frequency G2+ (P = .00041) and proctitis G1+ (P = .00046). However, the α/β ratios were similar in these no-DMF versus DMF models for both stool frequency G2+ (α/β 2.7 Gy vs 2.5 Gy) and proctitis G1+ (α/β 2.7 Gy vs 2.6 Gy). Frequency-weighted averaging of endpoint α/β ratios produced: G1 + α/β ratio = 2.4 Gy; G2 + α/β ratio = 2.3 Gy. Conclusions: We estimated α/β ratios for several common late adverse effects of rectal radiation therapy. When comparing dose-fractionation schedules, we suggest using late a rectal α/β ratio ≤ 3 Gy
Addition of abiraterone to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Model to estimate long-term survival, quality-adjusted survival, and cost-effectiveness
Background: Results from randomised trials show adding abiraterone acetate plus prednisolone (AAP) to standard of care (SOC) improves disease-free and overall survival in men with prostate cancer (PC) starting long-term hormone therapy for first time. Formal assessment is required of whether funding AAP here shows appropriate use of resources. This cost-effectiveness decision model tests if giving AAP to these patients is cost-effective using costs from English National Health Service, the largest nation where STAMPEDE recruited. / Methods: Health outcomes and costs were modelled using patient data from AAP comparison of STAMPEDE (recruitment 2011-14). This included 1917 men with high-risk, locally advanced metastatic or recurrent PC starting 1st-line hormone therapy. SOC was hormone therapy for ≥2 years with radiotherapy in pre-selected patients. If allocated to research group, AAP (AA 1000mg/day, P 5mg/day) was added to SOC. The model makes lifetime predictions of survival, costs and quality-adjusted lifeyears (QALYs), with costs and QALYs discounted at 3.5% annually. Sensitivity analyses were performed. / Results: The model predicted AAP would extend survival (discounted quality-adjusted survival) by 2.68y (1.46 QALYs) for metastatic patients and 0.30y (0.29 QALYs) for non-metastatic. The cost of AAP means it is not currently cost-effective in this setting, including with Patient Access Scheme costs for AAP and enzalutamide and similar reductions for cabazitaxel and Ra. If AAP’s price reduces after patent expiry as expected (90% reduction on BNF cost), it would be cost-effective in both patient groups, with incremental cost-effectiveness ratios below £10,000 (US$12,665) per QALY. AAP could also dominate in non-metastatic patients (i.e. lower costs and higher QALYs than SOC alone). / Conclusions: AAP could be cost-effective for patients with non-metastatic and metastatic disease with expected future pricing and may be cost-saving in the former. Policymakers should encourage license submissions and generic price reductions to facilitate use of AAP given cost-saving potential in addition to improving survival. / Clinical trial information: NCT00268476
Genitourinary α/β Ratios in the CHHiP Trial the Fraction Size Sensitivity of Late Genitourinary Toxicity: Analysis of Alpha/Beta (α/β) Ratios in the CHHiP Trial
PURPOSE: Moderately hypofractionated external beam intensity-modulated radiotherapy (IMRT) for prostate cancer is now standard-of-care. Normal tissue toxicity responses to fraction size alteration are non-linear: the linear-quadratic model is a widely-used framework accounting for this, through the α/β ratio. Few α/β ratio estimates exist for human late genitourinary endpoints; here we provide estimates derived from a hypofractionation trial. METHODS AND MATERIALS: The XXXXXX trial randomised 3216 men with localised prostate cancer 1:1:1 between conventionally fractionated IMRT (74Gy/37 fractions (Fr)) and two moderately hypofractionated regimens (60Gy/20Fr & 57Gy/19Fr). Radiotherapy plan and suitable follow-up assessment was available for 2206 men. Three prospectively assessed clinician-reported toxicity scales were amalgamated for common genitourinary endpoints: Dysuria, Haematuria, Incontinence, Reduced flow/Stricture, Urine Frequency. Per endpoint, only patients with baseline zero toxicity were included. Three models for endpoint grade ≥1 (G1+) and G2+ toxicity were fitted: Lyman Kutcher-Burman (LKB) without equivalent dose in 2Gy/Fr (EQD2) correction [LKB-NoEQD2]; LKB with EQD2-correction [LKB-EQD2]; LKB-EQD2 with dose-modifying-factor (DMF) inclusion [LKB-EQD2-DMF]. DMFs were: age, diabetes, hypertension, pelvic surgery, prior transurethral resection of prostate (TURP), overall treatment time and acute genitourinary toxicity (G2+). Bootstrapping generated 95% confidence intervals and unbiased performance estimates. Models were compared by likelihood ratio test. RESULTS: The LKB-EQD2 model significantly improved performance over LKB-NoEQD2 for just three endpoints: Dysuria G1+ (α/β=2.0 Gy, 95%CI 1.2-3.2Gy), Haematuria G1+ (α/β=0.9 Gy, 95%CI 0.1-2.2Gy) and Haematuria G2+ (α/β=0.6Gy, 95%CI 0.1-1.7Gy). For these three endpoints, further incorporation of two DMFs improved on LKB-EQD2: acute genitourinary toxicity and Prior TURP (Haematuria G1+ only), but α/β ratio estimates remained stable. CONCLUSIONS: Inclusion of EQD2-correction significantly improved model fitting for Dysuria and Haematuria endpoints, where fitted α/β ratio estimates were low: 0.6-2 Gy. This suggests therapeutic gain for clinician-reported GU toxicity, through hypofractionation, might be lower than expected by typical late α/β ratio assumptions of 3-5 Gy
Flexible trial design in practice – dropping and adding arms in STAMPEDE: a multi-arm multi-stage randomised controlled trial
The trial recruits men with locally advanced or metastatic prostate cancer starting standard long-term hormone therapy. There are 5 research arms and 1 control arm. The trial has a pilot stage assessing safety and feasibility, 3 intermediate “activity” stages (I-III) where the outcome measure is failure-free survival (FFS) and one final “efficacy” stage (IV) with overall survival as primary outcome measure. At the end of each stage, each research arm is formally compared pairwise to the control arm. Accrual of further patients is discontinued early for any research arm either not showing sufficient evidence of activity or with adverse safety considerations; accrual continues to arms showing activity with acceptable safety. The stopping guideline compares the treatment effect against a pre-defined cut-off value using the hazard ratio when the hazards are proportional and restricted-mean survival time otherwise. This interim hurdle becomes increasingly stringent stage-by-stage. The addition of new research arm(s) can be actively considered when sufficiently interesting agents emerge. New research arms are compared only to contemporaneously-recruited control arm patients using the same intermediate guidelines in a time-delayed manner. The addition of new research arms is independent of any of the original research arms stopping accrual early subject to adequate recruitment to support the overall trial aims
Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity.
BACKGROUND: Numerous germline single-nucleotide polymorphisms increase susceptibility to prostate cancer, some lying near genes involved in cellular radiation response. This study investigated whether prostate cancer patients with a high genetic risk have increased toxicity following radiotherapy. METHODS: The study included 1560 prostate cancer patients from four radiotherapy cohorts: RAPPER (n=533), RADIOGEN (n=597), GenePARE (n=290) and CCI (n=150). Data from genome-wide association studies were imputed with the 1000 Genomes reference panel. Individuals were genetically similar with a European ancestry based on principal component analysis. Genetic risks were quantified using polygenic risk scores. Regression models tested associations between risk scores and 2-year toxicity (overall, urinary frequency, decreased stream, rectal bleeding). Results were combined across studies using standard inverse-variance fixed effects meta-analysis methods. RESULTS: A total of 75 variants were genotyped/imputed successfully. Neither non-weighted nor weighted polygenic risk scores were associated with late radiation toxicity in individual studies (P>0.11) or after meta-analysis (P>0.24). No individual variant was associated with 2-year toxicity. CONCLUSION: Patients with a high polygenic susceptibility for prostate cancer have no increased risk for developing late radiotherapy toxicity. These findings suggest that patients with a genetic predisposition for prostate cancer, inferred by common variants, can be safely treated using current standard radiotherapy regimens.This work was supported by Cancer Research UK (C1094/A11728 to CMLW and NGB for the RAPPER study, C26900/A8740 to GCB, C5047A17528 to RE), the Royal College of Radiologists (GCB), Prostate Cancer UK (P2012148 to RE), The ELLIPSE Consortium on behalf of the GAME-ON Network, The National Institute for Health Research (GCB), Addenbrooke’s Charitable Trust (GCB), NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, The National Institute for Health Research Cambridge Biomedical Research Centre (NGB), UK Medical Research Council (LD), the Experimental Cancer Medicine Centre (CMLW), the Royal Marsden NHS Foundation Trust (DPD), the United States National Institutes of Health (1R01CA134444 to BSR), the American Cancer Society (RSGT-05-200-01-CCE to BSR), the United States Department of Defense (PC074201 to BSR), Mount Sinai Tisch Cancer Institute Developmental Fund Award (BSR), the Instituto de Salud Carlos III (FIS PI10/00164 and PI13/02030 to AV), Fondo Europeo de Desarrollo Regional (FEDER 2007-2013 to AV), Xunta de Galicia and the European Social Fund (POS-A/2013/034 to LF), and the Alberta Cancer Board Research Initiative Program (103.0393.71760001404 to MP). Laboratory infrastructure for the RAPPER study was funded by Cancer Research UK [C8197/A10123]. DD acknowledges support from the National Institute for Health Research RM/ICR Biomedical Research Centre and all the researchers at the Royal Marsden Hospital and the Institute of Cancer Research. The RAPPER cohort comprises patients and data recruited into the RT01 and CHHiP UK radiotherapy trials. The RT01 trial was supported by the UK Medical Research Council. The CHHiP trial (CRUK/06/016) was supported by the Department of Health and Cancer Research UK (C8262/A7253); trial recruitment was facilitated within centers by the National Institute for Health Research Cancer Research Network.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group
Cost-utility analysis of adding abiraterone acetate plus prednisone/prednisolone to long-term hormone therapy in newly diagnosed advanced prostate cancer in England: Lifetime decision model based on STAMPEDE trial data
Adding abiraterone acetate (AA) plus prednisolone (P) to standard of care (SOC) improves survival in newly diagnosed advanced prostate cancer (PC) patients starting hormone therapy. Our objective was to determine the value for money to the English National Health Service (NHS) of adding AAP to SOC. We used a decision analytic model to evaluate cost-effectiveness of providing AAP in the English NHS. Between 2011-2014, the STAMPEDE trial recruited 1917 men with high-risk localised, locally advanced, recurrent or metastatic PC starting first-line androgen-deprivation therapy (ADT), and they were randomised to receive SOC plus AAP, or SOC alone. Lifetime costs and quality-adjusted life-years (QALYs) were estimated using STAMPEDE trial data supplemented with literature data where necessary, adjusting for baseline patient and disease characteristics. British National Formulary (BNF) prices (£98/day) were applied for AAP. Costs and outcomes were discounted at 3.5%/year. AAP was not cost-effective. The incremental cost-effectiveness ratio (ICER) was £149,748/QALY gained in the non-metastatic (M0) subgroup, with 2.4% probability of being cost-effective at NICE's £30,000/QALY threshold; and the metastatic (M1) subgroup had an ICER of £47,503/QALY gained, with 12.0% probability of being cost-effective. Scenario analysis suggested AAP could be cost-effective in M1 patients if priced below £62/day, or below £28/day in the M0 subgroup. AAP could dominate SOC in the M0 subgroup with price below £11/day. AAP is effective for non-metastatic and metastatic disease but is not cost-effective when using the BNF price. AAP currently only has UK approval for use in a subset of M1 patients. The actual price currently paid by the English NHS for abiraterone acetate is unknown. Broadening AAP's indication and having a daily cost below the thresholds described above is recommended, given AAP improves survival in both subgroups and its cost-saving potential in M0 subgroup
Radiographic Progression-Free Survival and Clinical Progression-Free Survival as Potential Surrogates for Overall Survival in Men With Metastatic Hormone-Sensitive Prostate Cancer
PURPOSE: Despite major increases in the longevity of men with metastatic hormone-sensitive prostate cancer (mHSPC), most men still die of prostate cancer. Phase III trials assessing new therapies in mHSPC with overall survival (OS) as the primary end point will take approximately a decade to complete. We investigated whether radiographic progression-free survival (rPFS) and clinical PFS (cPFS) are valid surrogates for OS in men with mHSPC and could potentially be used to expedite future phase III clinical trials. METHODS: We obtained individual patient data (IPD) from 9 eligible randomized trials comparing treatment regimens (different androgen deprivation therapy [ADT] strategies or ADT plus docetaxel in the control or research arms) in mHSPC. rPFS was defined as the time from random assignment to radiographic progression or death from any cause whichever occurred first; cPFS was defined as the time from random assignment to the date of radiographic progression, symptoms, initiation of new treatment, or death, whichever occurred first. We implemented a two-stage meta-analytic validation model where conditions of patient-level and trial-level surrogacy had to be met. We then computed the surrogate threshold effect (STE). RESULTS: IPD from 6,390 patients randomly assigned from 1994 to 2012 from 13 units were pooled for a stratified analysis. The median OS, rPFS, and cPFS were 4.3 (95% CI, 4.2 to 4.5), 2.4 (95% CI, 2.3 to 2.5), and 2.3 years (95% CI, 2.2 to 2.4), respectively. The STEs were 0.80 and 0.81 for rPFS and cPFS end points, respectively. CONCLUSION: Both rPFS and cPFS appear to be promising surrogate end points for OS. The STE of 0.80 or higher makes it viable for either rPFS or cPFS to be used as the primary end point that is surrogate for OS in phase III mHSPC trials with testosterone suppression alone as the backbone therapy and would expedite trial conduct
Combining Enzalutamide with Abiraterone, Prednisone, and Androgen Deprivation Therapy in the STAMPEDE Trial
There are compelling reasons to study the addition of both enzalutamide and abiraterone, in combination, to standard-of-care for hormone-naïve prostate cancer. Through a protocol amendment, this will be assessed in the STAMPEDE trial, with overall survival as primary outcome measure. © 2014 European Association of Urology
- …