31 research outputs found

    How close are we to standardised extended RAS gene mutation testing? The UK NEQAS evaluation

    Get PDF
    Aims: Since 2008, KRAS mutation status in exon 2 has been used to predict response to anti-EGFR therapies. Recent evidence has demonstrated that NRAS status is also predictive of response. Several retrospective ‘extended RAS’ analyses have been performed on clinical trial material. Despite this, are we really moving towards such extended screening practice in reality? Methods: Data were analysed from four consecutive UK National External Quality Assessment Service for Molecular Genetics Colorectal cancer External Quality Assessment schemes (during the period 2014–2016), with up to 110 laboratories (worldwide) participating in each scheme. Testing of four or five tumour samples is required per scheme. Laboratories provided information on which codons were routinely screened, and provided genotyping and interpretation results for each sample. Results: At least 85% of laboratories routinely tested KRAS codons 12, 13 and 61. Over the four schemes, an increasing number of laboratories routinely tested KRAS codons 59, 117 and 146. Furthermore, more laboratories were introducing next generation sequencing technologies. The pattern of ‘extended testing’ was reassuringly similar for NRAS, although fewer laboratories currently test for mutations in this gene. Alarmingly, still only 36.1% and 24.1% of participating laboratories met the ACP Molecular Pathology and Diagnostics Group and American Society of Clinical Oncology guidelines, respectively, for extended RAS testing in the latest assessment. Conclusions: Despite recommendations in the UK and USA on extended RAS testing, there has clearly been, based on these results, a delay in implementation. Inadequate testing results in patients being subjected to harmful treatment regimens, which would not be the case, were routine practice altered, in line with evidence-based guidelines

    External Quality Assessment Schemes for Biomarker Testing in Oncology:Comparison of Performance between Formalin-Fixed, Paraffin-Embedded-Tissue and Cell-Free Tumor DNA in Plasma

    Get PDF
    Liquid biopsies have emerged as a useful addition to tissue biopsies in molecular pathology. Literature has shown lower laboratory performances when a new method of variant analysis is introduced. This study evaluated the differences in variant analysis between tissue and plasma samples after the introduction of liquid biopsy in molecular analysis. Data from a pilot external quality assessment scheme for the detection of molecular variants in plasma samples and from external quality assessment schemes for the detection of molecular variants in tissue samples were collected. Laboratory performance and error rates by sample were compared between matrices for variants present in both scheme types. Results showed lower overall performance [65.6% (n = 276) versus 89.2% (n = 1607)] and higher error rates [21.0% to 43.5% (n = 138) versus 8.7% to 16.7% (n = 234 to 689)] for the detection of variants in plasma compared to tissue, respectively. In the plasma samples, performance was decreased for variants with an allele frequency of 1% compared to 5% [56.5% (n = 138) versus 74.6% (n = 138)]. The implementation of liquid biopsy in the detection of circulating tumor DNA in plasma was associated with poor laboratory performance. It is important both to apply optimal detection methods and to extensively validate new methods for testing circulating tumor DNA before treatment decisions are made

    Validation of the Oncomine™ Focus Panel for Next Generation Sequencing of clinical tumour samples

    Get PDF
    The clinical utility of next-generation sequencing (NGS) for a diverse range of targets is expanding, increasing the need for multiplexed analysis of both DNA and RNA. However, translation into daily use requires a rigorous and comprehensive validation strategy. The aim of this clinical validation was to assess the performance of the Ion Torrent Personal Genome Machine (IonPGM™) and validate the Oncomine™ Focus DNA and RNA Fusion panels for clinical application in solid tumour testing of formalin-fixed, paraffin-embedded (FFPE) tissue. Using a mixture of routine FFPE and reference material across a variety of tissue and specimen types, we sequenced 86 and 31 samples on the Oncomine™ Focus DNA and RNA Fusion assays, respectively. This validation considered a number of parameters including the clinical robustness of the bioinformatics pipeline for variant detection and interpretation. The Oncomine™ Focus DNA assay had a sample and variant-based sensitivity of 99.1 and 97.1%, respectively, and an assay specificity of 100%. The Oncomine™ Focus Fusion panel had a good sensitivity and specificity based upon the samples assessed, however requires further validation to confirm findings due to limited sample numbers. We observed a good sequencing performance based upon amplicon, gene (hotspot variants within gene) and sample specific analysis with 92% of clinical samples obtaining an average amplicon coverage above 500X. Detection of some indels was challenging for the routine IonReporter™ workflow; however, the addition of NextGENe® software improved indel identification demonstrating the importance of both bench and bioinformatic validation. With an increasing number of clinically actionable targets requiring a variety of methodologies, NGS provides a cost-effective and time-saving methodology to assess multiple targets across different modalities. We suggest the use of multiple analysis software to ensure identification of clinically applicable variants.Publisher PDFPeer reviewe

    IQN path ASBL report from the first European cfDNA consensus meeting:expert opinion on the minimal requirements for clinical ctDNA testing

    Get PDF
    Liquid biopsy testing is a new laboratory-based method that detects tumour mutations in circulating free DNA (cfDNA) derived from minimally invasive blood sampling techniques. Recognising the significance for clinical testing, in 2017, IQN Path provided external quality assessment for liquid biopsy testing. Representatives of those participating laboratories were invited to attend a workshop to discuss the findings and how to achieve quality implementation of cfDNA testing in the clinical setting, the discussion and outcomes of this consensus meeting are described below. Predictive molecular profiling using tumour tissue in order to select cancer patients eligible for targeted therapy is now routine in diagnostic pathology. If insufficient tumour tissue material is available, in some circumstances, recent European Medicines Agency (EMA) guidance recommends mutation testing with plasma cfDNA. Clinical applications of cfDNA include treatment selection based on clinically relevant mutations derived from pre-treatment samples and the detection of resistant mutations upon progression of the disease. In order to identify tumour-related mutations in amongst other nucleic acid material found in plasma samples, highly sensitive laboratory methods are needed. In the workshop, we discussed the variable approaches taken with regard to cfDNA extraction methods, the tests, and considered the impact of false-negative test results. We explored the lack of standardisation of complex testing procedures ranging from plasma collection, transport, processing and storage, cfDNA extraction, and mutation analysis, to interpretation and reporting of results. We will also address the current status of clinical validation and clinical utility, and its use in current diagnosis. This workshop revealed a need for guidelines on with standardised procedures for clinical cfDNA testing and reporting, and a requirement for cfDNA-based external quality assessment programs

    International pilot external quality assessment scheme for analysis and reporting of circulating tumour DNA

    Get PDF
    Background Molecular analysis of circulating tumour DNA (ctDNA) is becoming increasingly important in clinical treatment decisions. A pilot External Quality Assessment (EQA) scheme for ctDNA analysis was organized by four European EQA providers under the umbrella organization IQN Path, in order to investigate the feasibility of delivering an EQA to assess the detection of clinically relevant variants in plasma circulating cell-free DNA (cfDNA) and to analyze reporting formats. Methods Thirty-two experienced laboratories received 5 samples for EGFR mutation analysis and/or 5 samples for KRAS and NRAS mutation analysis. Samples were artificially manufactured to contain 3 mL of human plasma with 20 ng/mL of fragmented ctDNA and variants at allelic frequencies of 1 and 5%. Results The scheme error rate was 20.1%. Higher error rates were observed for RAS testing when compared to EGFR analysis, for allelic frequencies of 1% compared to 5%, and for cases including 2 different variants. The reports over-interpreted wild-type results and frequently failed to comment on the amount of cfDNA extracted. Conclusions The pilot scheme demonstrated the feasibility of delivering a ctDNA EQA scheme and the need for such a scheme due to high error rates in detecting low frequency clinically relevant variants. Recommendations to improve reporting of cfDNA are provided

    Results of the UK NEQAS for Molecular Genetics reference sample analysis

    Get PDF
    Aims: In addition to providing external quality assessment (EQA) schemes, United Kingdom National External Quality Assessment service (UK NEQAS) for Molecular Genetics also supports the education of laboratories. As an enhancement to the Molecular Pathology EQA scheme, a human cell-line reference sample, manufactured by Thermo Fisher Scientific (AcroMetrix), was provided for analysis. This contained many variants, present at frequencies between 1% and 17.9%. Methods: One hundred and one laboratories submitted results, with a total of 2889 test results on 53 genes being reported. Known polymorphisms, 46/2889 (1.59%) results, were excluded. Variants detected in the seven most commonly reported (and clinically relevant) genes, KRAS, NRAS, BRAF, EGFR, PIK3CA, KIT and PDGFRA, are reported here, as these genes fall within the scope of UK NEQAS EQA schemes. Results: Next generation sequencing (NGS) was the most commonly performed testing platform. There were between 5 and 27 validated variants in the seven genes reported here. Eight laboratories correctly reported all five NRAS variants, and two correctly reported all eight BRAF variants. The validated mean variant frequency was lower than that determined by participating laboratories, with single-gene testing methodologies showing less variation in estimated frequencies than NGS platforms. Laboratories were more likely to correctly identify clinically relevant variants. Conclusions: Over 100 laboratories took the opportunity to test the ‘educational reference sample’, showing a willingness to further validate their testing platforms. While it was encouraging to see that the most widely reported variants were those which should be included in routine testing panels, reporting of variants was potentially open to interpretation, thus clarity is still required on whether laboratories selectively reported variants, by either clinical relevance or variant frequency

    Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL

    Get PDF
    Contains fulltext : 169719.pdf (publisher's version ) (Open Access)The clinical demand for mutation detection within multiple genes from a single tumour sample requires molecular diagnostic laboratories to develop rapid, high-throughput, highly sensitive, accurate and parallel testing within tight budget constraints. To meet this demand, many laboratories employ next-generation sequencing (NGS) based on small amplicons. Building on existing publications and general guidance for the clinical use of NGS and learnings from germline testing, the following guidelines establish consensus standards for somatic diagnostic testing, specifically for identifying and reporting mutations in solid tumours. These guidelines cover the testing strategy, implementation of testing within clinical service, sample requirements, data analysis and reporting of results. In conjunction with appropriate staff training and international standards for laboratory testing, these consensus standards for the use of NGS in molecular pathology of solid tumours will assist laboratories in implementing NGS in clinical services

    Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study

    Get PDF
    BACKGROUND: Repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. METHODS: We retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013-17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. FINDINGS: The diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2-99·0) and 99·6% specificity (99·1-99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). INTERPRETATION: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. FUNDING: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina

    Opportunistic genomic screening. Recommendations of the European Society of Human Genetics

    Get PDF
    If genome sequencing is performed in health care, in theory the opportunity arises to take a further look at the data: opportunistic genomic screening (OGS). The European Society of Human Genetics (ESHG) in 2013 recommended that genome analysis should be restricted to the original health problem at least for the time being. Other organizations have argued that ‘actionable’ genetic variants should or could be reported (including American College of Medical Genetics and Genomics, French Society of Predictive and Personalized Medicine, Genomics England). They argue that the opportunity should be used to routinely and systematically look for secondary findings—so-called opportunistic screening. From a normative perspective, the distinguishing characteristic of screening is not so much its context (whether public health or health care), but the lack of an indication for having this specific test or investigation in those to whom screening is offered. Screening entails a more precarious benefits-to-risks balance. The ESHG continues to recommend a cautious approach to opportunistic screening. Proportionality and autonomy must be guaranteed, and in collectively funded health-care systems the potential benefits must be balanced against health care expenditures. With regard to genome sequencing in pediatrics, ESHG argues that it is premature to look for later-onset conditions in children. Counseling should be offered and informed consent is and should be a central ethical norm. Depending on developing evidence on penetrance, actionability, and available resources, OGS pilots may be justified to generate data for a future, informed, comparative analysis of OGS and its main alternatives, such as cascade testing
    corecore