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g study evaluated the differences in variant analysis between tissue and plasma samples after the
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introduction of liquid biopsy in molecular analysis. Data from a pilot external quality assessment
scheme for the detection of molecular variants in plasma samples and from external quality assessment
schemes for the detection of molecular variants in tissue samples were collected. Laboratory perfor-
mance and error rates by sample were compared between matrices for variants present in both scheme
types. Results showed lower overall performance [65.6% (n = 276) versus 89.2% (n = 1607)] and
higher error rates [21.0% to 43.5% (n = 138) versus 8.7% to 16.7% (n = 234 to 689)] for the
detection of variants in plasma compared to tissue, respectively. In the plasma samples, performance

kuleuven.be.

was decreased for variants with an allele frequency of 1% compared to 5% [56.5% (n = 138) versus

74.6% (n = 138)]. The implementation of liquid biopsy in the detection of circulating tumor DNA in
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plasma was associated with poor laboratory performance. It is important both to apply optimal
detection methods and to extensively validate new methods for testing circulating tumor DNA before

treatment decisions are made. (J Mol Diagn

Jjjmoldx.2020.02.011)

2020, 22: 736—747; https://doi.org/10.1016/

Molecular biomarker testing is essential for treatment de-
cisions, mainly in non—small-cell lung cancer (NSCLC),
metastatic colorectal cancer, melanoma, and gastrointestinal
stromal tumors, and is currently widely accepted as a stan-
dard of patient care using tissue biopsy material.'*” Molec-
ular predictive testing of epidermal growth factor receptor
(EGFR), KRAS proto-oncogene, GTPase (KRAS), BRAF
proto-oncogene (BRAF), human epidermal growth factor
receptor 2 (HER2; alias ERBBZ2), anaplastic lymphoma
receptor tyrosine kinase (ALK), Ret proto-oncogene, ROS
proto-oncogene 1 (ROSI), neurotrophic tyrosine kinase
receptor (NTRKSs), and Met-skipping as well as programed
cell death ligand 1 (CD274; alias PDLI) staining are com-
mon practice in tissue biopsies in NSCLC.'” " For meta-
static colorectal cancer, KRAS, NRAS proto-oncogene,
GTPase (NRAS), and BRAF variant testing and microsatel-
lite instability analysis are performed before the selection of
patients for anti-EGFR treatment.”'’” '’ Patients with
gastrointestinal stromal tumors are tested for variants in Kit
proto-oncogene and platelet-derived growth factor receptor
o (PDGFRA),14 and melanoma, for BRAF."

According to the ISO 15189 standard, good quality
management is required for diagnostic laboratories per-
forming routine analysis on samples from cancer patients, to
ensure the reporting of only correct outcomes in all
patients.'® Therefore, laboratories participate in yearly
external quality assessment (EQA) schemes that evaluate
their quality of analysis. Until recently, EQA schemes
assessed the performance only on patient material from
tumor-resection specimens of formalin-fixed, paraffin-
embedded (FFPE) tissue blocks or, in some cases, from cell
lines with specific variants.'”"'® The use of plasma samples
for predictive testing through the detection of variants in
circulating cell-free (cf) DNA has recently emerged as a
promising noninvasive method, especially in patients in
whom no appropriate tissue is available."'”~** However,
today, the clinical validity and clinical utility of most
circulating cell-free tumor (ct) DNA testing methods are
lacking.”>** On the other hand, the findings from an inter-
national survey in 2016 demonstrated that many laboratories
are using cfDNA testing in routine practice.””***> *® The
only US Food and Drug Administration (FDA)-approved
cfDNA-based test with clinical utility in lung cancer is the
Cobas EGFR Mutation Test version 2 (Roche Diagnostics,
Pleasanton, CA) for the detection of EGFR variants in
cfDNA from patients with NSCLC.”” "' This test can be
used on cfDNA from plasma samples for first-line predictive
EGFR testing or for detecting the EGFR c¢.2369C>T
p-(Thr790Met) variant associated with progression on first-
and second-line EGFR-targeted tyrosine kinase inhibitors,

The Journal of Molecular Diagnostics m jmd.amjpathol.org

in cases in which not enough tissue or no tissue is available
for biopsy.'**** This indication led to the development of
other variant-detection kits specialized for use in plasma
samples, and to their accelerated approval by the European
Medicines Agency and the FDA.”” Now that plasma sam-
ples have emerged as a new sample type for predictive
testing, the need for quality assessment of performance
using plasma samples has risen. To meet the needs of this
new field, ctDNA pilot EQA schemes are being organized
by several EQA providers, such as the European Society of
Pathology (ESP) Foundation®” and the Qualitiitssicherungs-
Initiative Pathologie.”* In both programs, samples with
EGFR, KRAS, and BRAF variants were included. The In-
ternational Quality Network for Pathology (IQN Path; www.
ignpath.org, last accessed July 22, 2019) organized a first
joint ctDNA pilot scheme in 2017 as a collaboration
between different EQA providers.”® The four participating
EQA providers were the Association Italiana di Oncologica
Medica, the European Molecular Genetics Quality Network,
the ESP Foundation, and the UK National EQA service.
Results from this pilot EQA scheme were recently pub-
lished®” and showed an overall error rate of 20.1% on both
EGFR and RAS mutational analysis (n = 268) using spiked
plasma samples. RAS testing held the largest share of these
errors, 29.8% (n = 114), compared to 13.0% (n = 154) for
EGFR testing. In addition, a higher error rate was observed
in the samples with a variant allele frequency (VAF) of 1%
compared to 5%."”

Results from previous EQA schemes on tissue resections
indicated that laboratories report more errors when a new
technique or method has emerged,'®*>*® but also that
repeated EQA participation improves laboratory perfor-
mance over the years.'”'® Is this also the case for the
implementation of plasma samples in molecular pathology,
or is the performance in these plasma samples similar to the
performance in FFPE tissue samples? In the present study,
performance levels and error rates on sample level were
compared between laboratories analyzing plasma samples
and FFPE tissue samples. Samples were analyzed for
common variants important in treatment decisions using
different molecular techniques, which has previously not yet
been performed in other European EQA schemes.

Materials and Methods

Analysis results from the IQN Path cfDNA 2017 pilot
scheme were compared to analysis results from lung and
colon tissue EQA schemes organized by the ESP Founda-
tion, in close collaboration with the University of Leuven
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DNA extraction methods

QlAamp DNA FFPE Tissue/Circulating Nucleic Acid Kit (Qiagen)
Cobas (cf)DNA Sample Preparation Kit (Roche)
Unknown
Other

Maxwell 16 FFPE Tissue LEV DNA Purification/RSC ccfDNA...
MagMAX cfDNA Isolation Kit (Thermo Fisher Scientific)
QlAamp DNA (blood) Mini Kit (Qiagen)

Raw proteinase K lysate
Idylla KRAS Mutation Test (Biocartis)
Generead DNA FFPE Kit (Qiagen)

Nucleospin Tissue/Plasma Kit (Macherey Nagel)
AmoyDx FFPE DNA Kit (AmoyDx)
FFPE High Pure PCR template Preparation Kit (Roche)

20 30 40 50 60

o
=
o

Laboratories (%)

H Tissue Colon (n =163) Tissue Lung (n=178) ™ Plasma (n =31)

Figure 1  Overview of the used DNA extraction methods. Representation of the DNA extraction methods that were used by all unique participants during
the International Quality Network for Pathology circulating cell-free (cf) DNA 2017 pilot scheme®* and the European Society of Pathology external quality
assessment lung and colon schemes. For the laboratories participating to the lung and colon schemes, the last known DNA extraction method was used for this
analysis. A switch to a different method was observed for 19 participants in the lung schemes and seven participants in the colon schemes. Qiagen, Hilden,
Germany; Roche Diagnostics, Pleasanton, CA; Thermo Fisher Scientific, Schwerte, Germany; Biocartis, Mechelen, Belgium; Macherey Nagel, Diiren, Germany;
AmoyDx, Xiamen, China. ccf, circulating cell-free; FFPE, formalin-fixed, paraffin embedded.

(Leuven, Belgium), between 2015 and 2017. For the pilot
plasma scheme, 32 laboratories were selected to participate
based on their diagnostic testing procedures and the number
of clinical samples tested in routine, as reported recently
(laboratories with the highest number of plasma samples
analyzed in routine practice were selected).”® Although

Table 1

samples were sent to all 32, one of the participants did not
report any results. Ten spiked plasma samples harboring
previously validated EGFR, KRAS, and NRAS gene variants
were sent to the participating laboratories for analysis using
their routine protocol, starting with cfDNA extraction
(Figure 1). The ESP Foundation tissue EQA schemes

Detailed Description of the Different Scores that Were Used for the Assessment of All Participants from the IQN Path ctDNA 2017
Pilot Scheme and the ESP Foundation Lung and Colon EQA Schemes

Score Subcategory

Explanation

True correct results
Correct but unspecified

Correct

False-positive results
False-negative results
VAF < LOD

Incorrect

VAF > LOD

Completely incorrect results

Minor errors

Correct variant identified

Variant reported as "exon 19 deletion" in EGFR gene
instead of exact nucleotide sequence

Additional variant reported

Wild-type result reported but used detection method
could not identify the variant because sensitivity
is too low

Wild-type result reported although sensitivity of
method is sufficient to detect it = true false-
negative

Variant not detected, but another variant reported in
the same or a different gene

Almost correct result with an error that has no potential clinical implication for treatment indications

(eg, different variant in codon 12 of the KRAS gene®>°“® or mispositioning of exon 19 deletion in the

EGFR gene with a few nucleotides)
No test outcome given due to random failure of technical equipment or insufficient DNA content

Analytical failure

ctDNA, circulating cell-free tumor DNA; EGFR, epidermal growth factor receptor; EQA, external quality assessment; ESP, European Society of Pathology; IQN
Path, International Quality Network for Pathology; KRAS, KRAS proto-oncogene, GTPase; LOD, limit of detection; VAF, variant allele frequency.

738

jmd.amjpathol.org m The Journal of Molecular Diagnostics


http://jmd.amjpathol.org

Comparison of Tissue and Plasma ctDNA

(https://www.esp-foundation.org/activities/eqaschemes, last
accessed July 22, 2019) assessed the entire analytical
process, from genotyping to reporting of laboratory
findings, using a set of predefined score criteria.
Laboratories started their analysis of the EQA samples
with  DNA extraction according to routine practice
(Figure 1). The scope of the schemes organized by the
ESP Foundation includes variants in the EGFR, KRAS,
BRAF, and NRAS genes for NSCLC and metastatic colo-
rectal cancer. The scheme organization is compliant with the
predefined standards for EQA providers, ISO 17043.>7-"
For the past 10 years, the organization of these yearly
EQA schemes has led to an extensive database of EQA
results. The detailed setup, organization, and methods of
result collection for both schemes have been previously
described.'”-"*

To ensure uniformity across data from these different
EQA schemes, results from all samples were reassessed
(Table 1). Results from each laboratory were classified as
either correct, minor error without impact, incorrect with
potential implications on therapy decisions, or analytical
failure for which no test outcome could be provided. Correct
and incorrect classifications were subdivided using more
detail (Table 1). For example, incorrect results were sub-
classified as false-positive, false-negative, or completely
incorrect. These included also the laboratories that could not

Table 2

detect the variant due to insufficient sensitivity of their
detection methods (Table 1).

For tissue, 125, 123, and 105 laboratories participated in
the ESP Foundation colon EQA schemes, and 106, 97, and
114 laboratories participated in the ESP Foundation lung
EQA schemes, in 2015, 2016, and 2017, respectively. Based
on the 10 samples in the IQN Path cfDNA 2017 pilot EQA
scheme, five different groups were formed to analyze lab-
oratory performance (ie, percentage of laboratories that
identified the correct variant) and error rates (ie, percentage
of errors made on the total amount of samples) of molecular
analysis in plasma samples compared to FFPE samples, one
for each variant that was included in both the plasma and
tissue schemes (Table 2). These variants were: for colon
cancer, NRAS c.182A>G p.(GIn61Arg), and for lung can-
cer, EGFR ¢.2235_2249del p.(Glu746_Ala750del),
c.2573T>G p-(Leu858Arg), and c.2369C>T
p-(Thr790Met). The KRAS ¢.35G>C p.(Gly12Val) variant
was tested for both lung and colon cancers. Each variant
was present in one plasma sample with a VAF of 5% and
one with a VAF of 1%. The EGFR variants ¢.2573T>G
p-(Leu858Arg) and ¢.2369C>T p.(Thr790Met) were
simultaneously present in the same sample from the IQN
Path cfDNA 2017 pilot EQA scheme, but were assessed
independently from one another for this analysis. In addi-
tion, the two samples containing wild-type DNA offered in

Overview of the Used Variants within the IQN Path ctDNA 2017 Pilot Scheme and the Corresponding ESP Foundation Lung and

Colon EQA Schemes Forming the Five Comparison Groups Used for Analysis

Plasma samples in 2017 IQN path ctDNA Tissue samples in ESP

scheme

Foundation EQA schemes 2015—2017

Comparison group Laboratory

(one for each variant)

No. samples VAF, % performance, %

KRAS: ¢.35G>C 24 5 67
p.(Gly12val) 24 1 42
NRAS: c.182A>G 21 5 71
p-(Gln61Arg) 21 1 43
EGFR: c.2235_2249del 31 5 74
p-(Glu746_Ala750del) 31 1 68
EGFR: c.2573T>G 31 5 94
p.(Leu858Arg)
31 1 58
EGFR: c.2369C>T 31 5 84
p-(Thr790Met) 31 1 65

Laboratory ESP Foundation

No. samples VAF, % performance, % EQA scheme type and year
56 18 91 Lung 2017
105 42 96 Colon 2017
108 39 94 Colon 2015

15 37 93 Colon 2016
114 73 81 Lung 2015

43 30 93 Lung 2016
114 18 85 Lung 2015
114 38 89

96 24 91 Lung 2016

105 20 95 Lung 2017

107 35 98

107 18 95

104 19 84

114 23 78 Lung 2015

42 19 95 Lung 2016

53 5 77

107 35 81 Lung 2017

103 20 94

ctDNA, circulating cell-free tumor DNA; EGFR, epidermal growth factor receptor; EQA, external quality assessment; ESP, European Society of Pathology; IQN
Path, International Quality Network for Pathology; KRAS, KRAS proto-oncogene, GTPase; LOD, limit of detection; NRAS, NRAS proto-oncogene, GTPase; VAF,

variant allele frequency.
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the IQN Path cfDNA 2017 pilot EQA scheme were not used
for the comparison. All samples that were used in the ESP
Foundation lung and colon EQA schemes from the previous
three years harboring these five variants were also grouped
together. The VAFs of these FFPE samples varied between
5% and 73% (Table 2).

Laboratory performance and error rates on sample
level of all participants in either the IQN Path plasma
scheme or the ESP Foundation tissue schemes of the
previous three years were compared. In both analyses,
laboratory performance in plasma and tissue samples was
calculated on an overall level for all variants combined and
for the detection of each variant independently. Addi-
tionally, the amount and types of errors for each scheme
and for each variant separately were analyzed. Laboratory
performance was calculated based on the amount of

A kras: c3se>c p.(Gly12Ala)

Plasma samples
VAF5%  VAF 1%

Tissue samples

L17 c17 VAF 5%

n=24 n=24 n=>56 n=105 n=21

100 100

g 80 3 80
c =
(] ©

g 60 E 60
(=}
H 5

> 40 S a0
S S
S T

S 20 8 20
[ ©
- —

0

67% 42% 91% 96% 1%

C EGFR: c. 2235_2249del p.(Glu746_Ala750del)

VAF 1%
n=21

43%

EGFR: c.2573T>G p.(Leu858Arg)

Plasma samples Tissue samples Plasma samples
VAF5%  VAF 1% L15 L16 VAF 5%  VAF 1%
n=31 n=31 n=114 n=43 n=31 n=31
100 100
— S
B 80 < 80
o) @
o (5]
c c
s <
£ 60 € 60
5 S
= b=
5 [}
o Q
> 40 > 40
S =]
5 o
£ 20 % 20
B -
0 0
74% 68% 81% 93% 94% 58%
E EGFR: ¢.2369C>T p.(Thr790Met)
Plasma samples Tissue samples
VAF 5% VAF 1% L15 L16 L17 Legend:
n=31 n=31 n=114 n=95 n=210
100
Correct
2 g0 Minor error
[0}
o
c
g 60 Analytical failure
S
b Incorrect
[
o
> 40
2
o
8 20
©
-
0

84% 65% 78% 85% 88%
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correct results and the total amount of all submitted results
by the participating laboratories. The error rates were
calculated based on the total amount of errors and the total
amount of samples. Results of the analysis, for each
comparison group and for each of the variants, were dis-
played in separate panels. Finally, the performance scores
for each of the methods used for variant detection were
analyzed.

Results

The four classifications of laboratory performance used in
this analysis are shown in Table 1, and the results from the
comparisons between plasma samples and FFPE tissue
samples are shown in Table 2. The VAF of the tissue

B NRAS: c.182A>G p.(GIn61Arg)

Plasma samples

Tissue samples
c15 c16

n=108 n=15

Figure 2  Comparison of the laboratory per-
formances on variant testing between plasma and
formalin-fixed, paraffin embedded (FFPE) tissue
samples. Each panel consists of all performance
data for each variant group: A: KRAS: ¢.35G>C
p.(Gly12Ala); B: NRAS: c.182A>G p.(Gln61Arg); C:
EGFR: c.2235_2249del p.(Glu746_Ala750del); D:
EGFR:  ¢c.2573T>G  p.(Leu858Arg); E: EGFR:
€.2369C>T p.(Thr790Met). In each panel the
laboratory performance for the two plasma sam-
ples [1% and 5% variant allele frequency (VAF)]
separately are compared with the performance for
the FFPE tissue samples separated per external
quality assessment (EQA) scheme. C15, European
Society of Pathology (ESP) EQA colon scheme
2015; C16, ESP EQA colon scheme 2016; C17, ESP
EQA colon scheme 2017; L15, ESP EQA lung
scheme 2015; L16, ESP EQA lung scheme 2016;
L17, ESP EQA lung scheme 2017.

94% 93%

Tissue samples

L15
n=228

L16
n=96

L17
n=423

87% 91% 93%

(wrong mutation in correct codon/deletion mispositioned)
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samples varied between 5% and 73%, and the laboratory
performances reached at least 77.4%, with a maximum of
98.1% (Table 2). Because there was no correlation between
VAF and performance for tissue samples, VAF was not
considered during further analysis. The difference in labo-
ratory performance between plasma samples with VAFs of
5% and 1% were more substantial [74.6% (n = 138) versus
56.5% (n 138)] (Figure 2) and were considered as
different groups in further analysis of the plasma samples.

The scores from each variant group (Table 2) were
visualized in more detail in Figure 2, with each group dis-
played in a separate panel. For each of the five variants
(Figure 2), a lower laboratory performance was observed for
the plasma samples when compared to the FFPE tissue
samples [mean correct samples: plasma, 65.6% (n = 276)
versus tissue, 89.2% (n = 1607)]. Furthermore, the analysis
of the plasma samples showed overall lower performance on
the detection of KRAS/NRAS variants compared to EGFR
variants (55.6% [n 90] versus 73.7% [n 186],
respectively). This finding was less obvious on the labora-
tory performance in detection in FFPE tissue samples [RAS

variants, 94.4% (n = 284); EGFR variants, 88.1%
(n = 1323)].
Analytical failures were reported 2 times (0.7%,

n = 276) by two independent laboratories participating in
the plasma scheme compared to 39 times (2.4%, n = 1607)
by laboratories participating in the tissue scheme. Minor

Error rates for every EQA scheme
PS TS

A

VAF 5% VAF 1% L15 L16

L17

100
90
80
70
60
50
40
30

20

10
0 H
29 60

Error type (%)

Number of errors reported 76 26 60
Number of samples 138 138 456 234 689
Error rate 21.0% 43.5% | 16.7% 11.1% 8.7%
Legend: .
9 Figure 3
Minor error

(Wrong mutation in correct codon/Deletion mispositioned)

Error type (%)

errors were reported 17 times (6.2%, n = 276) in the plasma
scheme compared to 6 times (0.4%, n = 1607) in the tissue
scheme, with the majority presenting in the detection of the
EGFR c.2235_2249del p.(Glu746_Ala750del) variant.

To investigate specific types of reported errors (eg, false-
negative, false-positive, incorrect, minor error, or analytical
failure) (Table 1), the error rates were compared between
plasma and tissue or within variant groups, and visualized
by EQA scheme (Figure 3A) and by variant (Figure 3B).
For this analysis, only incorrect results were considered,
with 100% representing all errors made within an EQA
scheme (Figure 3A) and within the variant groups
(Figure 3B). The error rates for the combined detection of
the three investigated genes, EGFR, KRAS, and NRAS, in
the ESP Foundation lung EQA schemes using FFPE tissue
samples remained relatively low [2015, 16.7% (n = 456);
2016, 11.1% (n = 234); and 2017, 8.7% (n = 689)]. The
error rates in the IQN Path cfDNA 2017 pilot EQA scheme
using plasma samples were significantly higher compared to
these error rates for FFPE-tissue samples (VAF 5%: 21.0%
(n = 138); VAF 1%, 43.5% (n = 138)] (Figure 3A). In the
plasma scheme, more errors were reported in the detection
of the KRAS and NRAS variants [45.8% (n 48) and
42.9% (n 42), respectively] compared to the EGFR
variants (29.0%, 24.2%, and 25.8% (n = 62), respectively).
In the tissue scheme, this finding was not observed, with a
higher error rate for the detection of the EGFR variants

Error rates for every variant analysis

RAS variants EGFR variants
PS TS | PS Ts | PS Ts PS TS | Ps TS
100 I | [
90
80 |
70 .
60
50 I
40 .
30
20
-1 il
. I Bl N
22 9 18 7 18 25 15 67 16 65
48 161 | 42 123 62 157 62 747 | 62 419
45.8% 5.6%| 42.9% 5.7% [29.0% 15.9%| 24.2% 9.0%|25.8% 15.5%

Analysis of the different reported errors. A: The percentage of the

various error types for every scheme. B: Percentages of the various error types for
every variant group separately [KRAS: ¢.35G>C p.(Glyl2Ala); NRAS: c.182A>G
p.(Gln61Arg); EGFR: c.2235_2249del p.(Glu746_Ala750del); EGFR: c.2573T>G
p.(Leu858Arg); EGFR: c.2369C>T p.(Thr790Met)]. Due to a limited sample size in

the European Society of Pathology external quality assessment (ESP EQA) colon

. Incorrect (Wrong mutation)

False negative

False negative < LOD

(VAF of variant lower than LOD of used method)
. False positive

Analytical failure
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tissue schemes, the reported errors in these schemes were left out of the analysis.
L15, ESP EQA lung scheme 2015; L16, ESP EQA lung scheme 2016; L17, ESP EQA
lung scheme 2017; LOD, limit of detection; PS, plasma samples; TS, tissue samples;
VAF, variant allele frequency.
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[15.9% (n = 157), 9% (n = 747), and 15.5% (n = 419)]
compared to the KRAS/NRAS variants [5.6% (n = 161) and
5.7% (n = 123)] (Figure 3B).

Of all reported errors, false-negative was the most
frequently reported error type in both the plasma and FFPE
tissue schemes [32.6% (n = 29/89) and 50.6% (n = 82/
162), respectively] (Figure 3A). Additionally, a large per-
centage of the reported errors consisted of false-positive
results (plasma scheme, 15.7% (n 14/89); tissue
scheme, 15.4% (n = 25/162)] (Figure 3). Included in these
false-positive results were the data from all of the labora-
tories that reported the correct variant but also an additional
variant that was not present in the sample. The most
frequently detected false-positive result was the EGFR
¢.2369C>T p.(Thr790Met) variant, followed by the EGFR
¢.2361G>A p.(GIn787 = ) and ¢.2573T>G p.(Leu858Arg)
variants. Two other KRAS variants, one in codon 12 and one
in codon 13, were also frequently detected as false positive
(data not shown). The false-positives were not correlated
with a specific scheme type, year, case, or method. They
were, however, mainly reported by the same laboratory.
Analytical failures were reported more often on analysis of
tissue samples compared to plasma samples [24.1%
(n 162) versus 2.2% (n 89)]. Minor errors, on the
other hand, were reported more often with the plasma
scheme compared to the tissue scheme [19.1% (n 89)
versus 1.9% (n = 162)] (Figure 3).

The variant-detection methods used by participants in the
IQN Path cfDNA 2017 pilot EQA scheme were reported
previously.” Next-generation sequencing (NGS)-based
methods were used most frequently (KRAS, 58% (n = 48);
NRAS, 67% (n = 42); and EGFR, 39% (n = 186)]
(Figure 4). For the EGFR variants, a large percentage of
samples were also frequently analyzed using either droplet
digital PCR (ddPCR; 23%, n = 42) and the FDA-approved

A KrAs: ¢.3565C p.(Gly12Ala) (n = 48)
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Correct
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Incorrect

B nRras: c.18285G p.(GIn61Arg) (n = 42)

ddPCR

n=6

14%

Cobas EGFR Mutation Test version 2 (Roche Diagnostics;
26%, n = 48) (Figure 4). Most errors were observed when
non—NGS-based, laboratory-developed tests were used
[KRAS, 100% (n 2); EGFR, 50% (n 6)]. Frequent
errors were also observed when an NGS-based technique
was used [KRAS, 32% (n = 28); NRAS, 50% (n = 28); and
EGFR, 29% (n = 72)]. Error rates were lower when ddPCR
(NRAS, 17% (n = 6); EGFR, 21% (n = 42)] and PCR-
based commercial kits (FDA approved or not) [NRAS,
33% (n = 6); EGFR, 5% (n = 66)] were used. Error rates
for KRAS variants detected using ddPCR or PCR-based
commercial kits were more comparable to the performance
of the NGS-based methods [commercial kits, 38% (n = 8);
ddPCR, 25% (n = 8)] (Figure 4).

The variant-detection methods used by participants in the
ESP Foundation lung and colon EQA schemes were reported
previously.™ In tissue samples, analysis of method perfor-
mance in the detection of the variants showed that com-
mercial kits were used most frequently [KRAS, 41%
(n 161); NRAS, 44% (n 123); and EGFR, 53%
(n = 1323)] (Figure 5). For KRAS and EGFR variants, these
methods were followed closely by NGS-based techniques
[KRAS, 36% (n = 161); EGFR, 29% (n = 1323)] (Figure 5).
Most errors were observed when laboratories used a
noncommercial method for the detection of KRAS and EGFR
variants [6% (n 37) and 15% (n 233), respectively],
whereas most errors in NRAS variants were observed when a
commercial kit was used (7% [n = 54]) (Figure 5).

Discussion

The use of plasma samples for molecular analysis offers a
noninvasive addition to the use of tissue samples. Because
ctDNA is only a very small fraction of total cfDNA in

C EGFR variants (n = 186)
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Method performance analysis for each of the three genes analyzed in plasma samples.
A—C: Performance scores for each of the investigated variants were analyzed and grouped together
based on the detection method that was used. All three EGFR variants were analyzed together. The
commercial kit (Cobas EGFR mutation test version 2; Roche) approved by the US Food and Drug
Administration was grouped together to visualize its performance separate from other commercial
kits. BEAMing, beads, emulsion, amplification, and magnetics; ddPCR, droplet digital PCR; LDT,

laboratory developed test; NGS, next-generation sequencing.
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plasma, variant-detection assays with a much higher
analytical sensitivity than detection assays currently used
in tissue testing are required for the same variants in
ctDNA testing. Due to a lack of optimization and vali-
dation of this matrix, currently plasma samples are used in
only a very specific setting in NSCLC patients, whereas
tissue samples are recommended for use in molecular di-
agnostics in multiple cancer types and multiple bio-
markers."”” This study showed higher error rates
(Figure 3), and lower laboratory performances (Figure 2),
in detecting clinically relevant variants in plasma samples
compared to FFPE tissue samples. These results show that
the setup of testing for plasma samples is not optimal,
which can partially be explained by the fact that some of
the methods used lack sufficient analytical sensitivity for
the analysis of plasma samples. Currently, only one
method with FDA approval is available for the detection
of EGFR variants in plasma samples. This method has
been shown to perform better compared to the other
frequently used detection methods, but only 26% of the
plasma samples in our study were analyzed for EGFR
variants using the FDA-approved Cobas EGFR Mutation
Test version 2 (Roche Diagnostics) (Figure 4C). This
limited use of FDA-approved methods for plasma sample
analysis may be an explanation for the lower performances
and higher error rates that were observed during this first
plasma-based EQA scheme (Figures 2—4). For the
detection of NRAS and KRAS variants in plasma samples,
no FDA-approved methods are currently available,

A Kras: ¢.356>C p.(Gly12A1a) (n = 161)
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resulting in higher error rates across the different methods
available for the detection of RAS variants (Figure 4, A
and B).

In this study, laboratory performance using an NGS-
based technique was lower in plasma samples compared to
tissue samples (KRAS, 32% (n = 28) versus 1.7%
(n 58), respectively; NRAS, 50% (n = 28) versus 0%
(n = 20); EGFR, 29% (n = 72) versus 9.6% (n = 385)]
(Figures 4 and 5). Many laboratories use the same NGS
technique for both tissue analysis and plasma analysis even
though the VAF is most often lower in plasma samples.
Laboratories not using NGS have most often switched to a
plasma-specific technique such as ddPCR, reducing the
number of NGS users within plasma compared to tissue
schemes. The first EQA data using plasma samples
(Figures 2 and 4) also showed that the lack of sensitivity
of many currently available variant-detection methods,
mostly NGS-based techniques, may lead to the lower
laboratory performance and higher error rates for samples
with a VAF of 1% or 5%. The importance of the VAF of
the detected variants was also observed in a first German
EQA initiative for plasma testing, which evaluated labo-
ratory performance in the detection of the EGFR
¢.2369C>T p.(Thr790Met) variant in spiked plasma sam-
ples. The use of samples with a higher VAF in this EQA
scheme yielded an overall laboratory performance of
83.3% (n = 42).”* These findings indicate a need for EQA
schemes that represent a more clinically relevant situation
with samples with a lower VAF.

B nras: c.1s2a56 p.(GIn61Arg) (n = 123)

Figure 5 Method performance analysis for

each of the three genes analyzed in tissue sam-

rcomme ples. A—C: Performance scores for each of the
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A significant percentage of errors reported on analysis of
plasma samples were classified as false-negative < limit of
detection, indicating that the VAF used in this EQA scheme
was smaller than the currently used limit of detection of the
variant-detection methods (Figure 3). These findings indi-
cate a need for the development of improved variant-
detection methods capable of detecting variants with a
lower VAF (<1%), since these variants represent the clin-
ically relevant variants present in patient plasma samples.
Therefore, an improvement in sensitivity of the detection of
variants in plasma samples is needed for reaching the same
quality of analysis as for tissue samples. Recently, variant-
detection assays with a limit of detection of close to 0.1%
have been reported, such as ddPCR, BEAMing (beads,
emulsion, amplification and magnetics), and some NGS
assays.”' "’ With these recent developments, it is expected
that, in the near future, more methods with a higher sensi-
tivity, and that are able to detect more variants and other
biomarkers in plasma samples, will be developed, providing
a larger clinical application for the use of plasma samples in
routine clinical practice. For the analysis of FFPE tissue
samples, sensitivity is less problematic because in routine
molecular diagnostics using tissue biopsy, in general a
minimum of 20% neoplastic cells (~ 10% VAF) is required,
and most variant-detection assays used on tissue with limits
of detection of 1% to 5% are suitable for this purpose. This
is in agreement with the relative high performance of tissue-
sample analysis, independent of the VAF varying between
5% and 73% in EQA tissue samples. Aside from the low
sensitivity, current variant-detection methods for use on
plasma samples are often unable to specify the exact
nucleotide sequence of the variant. This is observed from
the higher occurrence of minor errors in the analysis of
plasma samples compared to tissue samples [19.1%
(n = 17/89) versus 1.9% (n = 3/162)]. These findings
represent the inability of some detection methods to
distinguish between different variants and indicate a need
for techniques that are able to genotype the observed vari-
ants. Additionally, a significant percentage of these errors
are represented by false-positive results (10.0% to 27.6%),
although not all with an equally important clinical impact
(Figure 3). The false-positive error rate imposes a greater
risk in lung cancer patients. These patients will receive a
potentially toxic and expensive treatment that will lack any
therapeutic benefit. It should be noted, however, that about
one-third of all false positives were reported by a single
laboratory that used an NGS detection method and reported
all detected variants with a possible clinical relevance, some
with a low frequency (data not shown).

The results from the present study also showed higher
laboratory performance and lower error rates in the detec-
tion of EGFR variants compared to RAS variants in plasma
samples (Figures 2 and 3). The higher scores for the
detection of EGFR variants in plasma samples can be
explained by the availability of companion diagnostics for
these variants and not for RAS variants [eg, the detection of
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the EGFR ¢.2369C>T p.(Thr790Met) variant in liquid bi-
opsy samples].” Since the implementation of the detection
of molecular biomarkers in ctDNA extracted from plasma
samples, the development of methods to detect EGFR var-
iants in lung cancer was a higher priority because of its high
clinical importance in these patients, especially in patients
whose disease progressed on first- and second-line tyrosine
kinase inhibitors and with no availability of tissue biopsy
samples.””*”*’ This better availability of methods focused
on the detection of EGFR variants has been confirmed by
the analysis of performance based on the detection method
used. In this analysis, higher error rates were equally spread
over the different KRAS variant (and NRAS variant) detec-
tion methods compared to EGFR detection methods
(Figure 4). This is in contrast with the higher laboratory
performance and lower error rates observed in the detection
of RAS variants compared to EGFR variants in tissue sam-
ples (Figures 2, 3, and 5). These results are in line with the
previously mentioned results from the IQN Path cfDNA
2017 pilot EQA scheme.” Based on results from this
scheme®*** and a discussion-based workshop, a consensus
opinion on good practices for plasma testing was drafted.**

It should also be mentioned that our study had some
important limitations. The IQN Path cfDNA 2017 pilot
EQA scheme was organized using spiked plasma samples
instead of real patient material like in the ESP Foundation
tissue EQA schemes. This may be an explanation for the
lower laboratory performances and higher error rates in the
detection of variants in plasma samples compared to tissue
samples. Unfortunately, acquiring such high amounts of
patient plasma samples for EQA purposes is currently not
possible. To mimic clinical practice as closely as possible,
spiked plasma samples with a relatively low VAF were used
instead.

Despite these limitations, it was observed that when a
new sample type was introduced into routine practice, lab-
oratories had lower initial performance when using the
newer technique. The main reason for this lower perfor-
mance may have been the need for a method with sufficient
sensitivity and specificity for application in plasma analysis.
More research and more experience are necessary for
achieving the same performance level on variant analysis
using plasma samples as for the gold standard using tissue
samples. Similar lower laboratory performance was previ-
ously observed with the implementation of ROS! testing in
NSCLC patients and the expansion of the RAS testing scope.
In those situations, EQA schemes had already proved to
increase laboratory performance of participants over the
years.'”'® Quality assessment of plasma samples using
EQA schemes can thus contribute to the approval of this
matrix as clinical routine. The limitations of plasma testing
should be closely monitored to avoid administering unnec-
essary harmful treatments in nonresponsive patients as well
as to avoid missing a potentially beneficial therapeutic effect
in other patients. With regard to the limitations of analyzing
plasma samples, it is essential to ensure high sensitivity and
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specificity of variant-detection methods to achieve
high-quality testing. Based on the development of new
variant-detection assays with both higher sensitivity and
specificity,”' " significant improvement is expected in
following ctDNA EQA schemes. These EQA schemes
should represent clinical practice as closely as possible,
although the use of patient samples is not possible due to
practical and ethical considerations. The spiked or artificial
plasma samples used for EQA schemes should represent
clinically relevant patient samples with a low VAF and an
amount of input DNA that will challenge the limit of
detection of the methods of a laboratory.
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