10 research outputs found

    The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudoautosomal regions (PAR1 and PAR2) in eutherians retain homologous regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover during male meiosis. Genes that reside in the PAR1 are exceptional in that they are rich in repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PAR1 homologs have translocated to various autosomes, reflecting the complex recombination history during the evolution of the mammalian X chromosome.</p> <p>Results</p> <p>We now report that the SNF2-type chromatin remodeling protein ATRX controls the expression of eutherian ancestral PAR1 genes that have translocated to autosomes in the mouse. In addition, we have identified two potentially novel mouse PAR1 orthologs.</p> <p>Conclusion</p> <p>We propose that the ancestral PAR1 genes share a common epigenetic environment that allows ATRX to control their expression.</p

    Variation in Array Size, Monomer Composition and Expression of the Macrosatellite DXZ4

    Get PDF
    Macrosatellites are some of the most polymorphic regions of the human genome, yet many remain uncharacterized despite the association of some arrays with disease susceptibility. This study sought to explore the polymorphic nature of the X-linked macrosatellite DXZ4. Four aspects of DXZ4 were explored in detail, including tandem repeat copy number variation, array instability, monomer sequence polymorphism and array expression. DXZ4 arrays contained between 12 and 100 3.0 kb repeat units with an average array containing 57. Monomers were confirmed to be arranged in uninterrupted tandem arrays by restriction digest analysis and extended fiber FISH, and therefore DXZ4 encompasses 36–288 kb of Xq23. Transmission of DXZ4 through three generations in three families displayed a high degree of meiotic instability (8.3%), consistent with other macrosatellite arrays, further highlighting the unstable nature of these sequences in the human genome. Subcloning and sequencing of complete DXZ4 monomers identified numerous single nucleotide polymorphisms and alleles for the three microsatellite repeats located within each monomer. Pairwise comparisons of DXZ4 monomer sequences revealed that repeat units from an array are more similar to one another than those originating from different arrays. RNA fluorescence in situ hybridization revealed significant variation in DXZ4 expression both within and between cell lines. DXZ4 transcripts could be detected originiating from both the active and inactive X chromosome. Expression levels of DXZ4 varied significantly between males, but did not relate to the size of the array, nor did inheritance of the same array result in similar expression levels. Collectively, these studies provide considerable insight into the polymorphic nature of DXZ4, further highlighting the instability and variation potential of macrosatellites in the human genome

    Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome

    No full text
    Abstract Background Macrosatellites are some of the largest variable number tandem repeats in the human genome, but what role these unusual sequences perform is unknown. Their importance to human health is clearly demonstrated by the 4q35 macrosatellite D4Z4 that is associated with the onset of the muscle degenerative disease facioscapulohumeral muscular dystrophy. Nevertheless, many other macrosatellite arrays in the human genome remain poorly characterized. Results Here we describe the organization, tandem repeat copy number variation, transmission stability and expression of four macrosatellite arrays in the human genome: the TAF11-Like array located on chromosomes 5p15.1, the SST1 arrays on 4q28.3 and 19q13.12, the PRR20 array located on chromosome 13q21.1, and the ZAV array at 9q32. All are polymorphic macrosatellite arrays that at least for TAF11-Like and SST1 show evidence of meiotic instability. With the exception of the SST1 array that is ubiquitously expressed, all are expressed at high levels in the testis and to a lesser extent in the brain. Conclusions Our results extend the number of characterized macrosatellite arrays in the human genome and provide the foundation for formulation of hypotheses to begin assessing their functional role in the human genome.</p

    The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite

    Get PDF
    Background: The X-linked macrosatellite DXZ4 is a large homogenous tandem repeat that in females adopts an alternative chromatin organization on the primate X chromosome in response to X-chromosome inactivation. It is packaged into heterochromatin on the active X chromosome but into euchromatin and bound by the epigenetic organizer protein CTCF on the inactive X chromosome. Because its DNA sequence diverges rapidly beyond the New World monkeys, the existence of DXZ4 outside the primate lineage is unknown.\ud Results: Here we extend our comparative genome analysis and report the identification and characterization of the mouse homolog of the macrosatellite. Furthermore, we provide evidence of DXZ4 in a conserved location downstream of the PLS3 gene in a diverse group of mammals, and reveal that DNA sequence conservation is restricted to the CTCF binding motif, supporting a central role for this protein at this locus. However, many features that characterize primate DXZ4 differ in mouse, including the overall size of the array, the mode of transcription, the chromatin organization and conservation between adjacent repeat units of DNA sequence and length. Ctcf binds Dxz4 but is not exclusive to the inactive X chromosome, as evidenced by association in some males and equal binding to both X chromosomes in trophoblast stem cells.\ud Conclusions: Characterization of Dxz4 reveals substantial differences in the organization of DNA sequence, chromatin packaging, and the mode of transcription, so the potential roles performed by this sequence in mouse have probably diverged from those on the primate X chromosome

    ATRX Partners with Cohesin and MeCP2 and Contributes to Developmental Silencing of Imprinted Genes in the Brain

    No full text
    Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain
    corecore