40 research outputs found

    Evolution of phosphorus speciation with depth in an agricultural soil profile

    Get PDF
    With time, different soil-forming processes such as weathering, plant growth, accumulation of organic matter, and cultivation are likely to affect phosphorus (P) speciation. In this study, the depth distribution of P species was investigated for an agricultural clay soil, Lanna, Sweden. Small amounts of apatite-P was demonstrated in the topsoil whereas the speciation of Pat 70-100 cm depth consisted of approximately 86% apatite according to P K-edge XANES (X-ray absorption near-edge structure) spectroscopy. Because there were only minor differences in bulk mineralogy and texture, these variations in P speciation were interpreted as the result of apatite weathering of the topsoil. Speciation modeling on soil extracts supported this idea: hydroxyapatite was not thermodynamically stable in the top 50 cm of the soil. Apatite was enriched in the bulk soil relative to the clay fraction, as expected during apatite dissolution. Combined results from batch experiments, XANES spectroscopy and X-ray diffraction suggested chemical transformations of the topsoil as a result from accumulation of organic matter and airing from tillage followed by enhanced weathering of apatite, amphiboles, clay minerals, and iron oxides. This caused the formation of poorly crystalline secondary iron and aluminum (hydr)oxides in the topsoil, which retained part of the released P from apatite. Other P was incorporated into organic forms. Furthermore, the results also showed that short-term acidification below the current pH value (below 5.5 in the topsoil and 7.2 in the deeper subsoil) caused significant solubilization of P. This is attributed to two different mechanisms: the instability of Al-containing sorbents (e.g. Al hydroxides) at low pH (in the topsoil), and the acid-mediated dissolution of apatite (the subsoil). (C) 2016 Elsevier B.V. All rights reserved

    Brucellosis in Sub-Saharan Africa:Current challenges for management, diagnosis and control

    Get PDF
    Brucellosis is a highly contagious zoonosis caused by bacteria of the genus Brucella and affecting domestic and wild mammals. In this paper, the bacteriological and serological evidence of brucellosis in Sub-Saharan Africa (SSA) and its epidemiological characteristics are discussed. The tools available for the diagnosis and treatment of human brucellosis and for the diagnosis and control of animal brucellosis and their applicability in the context of SSA are presented and gaps identified. These gaps concern mostly the need for simpler and more affordable antimicrobial treatments against human brucellosis, the development of a B. melitensis vaccine that could circumvent the drawbacks of the currently available Rev 1 vaccine, and the investigation of serological diagnostic tests for camel brucellosis and wildlife. Strategies for the implementation of animal vaccination are also discussed.Publishe

    Phosphorus speciation of clay fractions from long-term fertility experiments in Sweden

    Get PDF
    Phosphorus (P) losses from agricultural soils constitute a main driver for eutrophication of the Baltic Sea. There is limited knowledge about sorption and release processes of P in these soils, especially concerning the effects of fertilization. In this study, P speciation of the clay fractions from six different soils in long-term fertility experiments in Sweden was investigated by P K-edge XANES spectroscopy. As expected, unfertilized soils had lower concentrations of acid-digestible P compared with fertilized soils. Based on best-fit standards that emerged from linear combination fitting (LCF) of XANES spectra, phosphate sorbed on iron (Fe) (hydr)oxides was a dominant P species in clay fractions from unfertilized soils containing more than 35 mmol kg(-1) of oxalate-extractable Fe. In contrast, P sorbed on aluminum (Al) (hydr)oxides predominated in soils with lower concentrations of oxalate-extractable Fe. A greater proportion of organically bound P was fit for soil samples containing &gt;2% organic carbon. The soils included one calcareous soil for which a greater proportion of P was fit as apatite. After long-term fertilization, P had accumulated mainly as P adsorbed to Al (hydr) oxides according to the XANES analysis. Our research shows that P speciation in fertilized agricultural soils depended on the level of P buildup and on the soil properties.QC 20150303</p

    Internal migrants and labour market discrimination in Shanghai's manufacturing sector

    No full text
    China has witnessed the largest migration wave in human history since the initiation of economic reforms in 1978. Millions of migrants seek job opportunities and higher incomes in cities where economy booms. Without local permanent residential status (local hukou), migrants are subject to social and economic constraints. This thesis examines the extent to which migrants are disadvantaged and discriminated in Shanghai’s manufacturing sector. The thesis further explains the underlying reasons for such discrimination. Fieldwork in Shanghai comprised a random survey in 21 manufacturing companies, interviews with personnel managers and migrant workers. This allows for a full analysis of labour market outcomes for migrants from rural areas (rural migrants), migrants from towns and cities (urban migrants), and local workers. The results show that residential status has significant effects on occupations and wages, after controlling for other factors such as education and work experience. Both rural and urban migrants are disadvantaged in the urban labour market compared with local workers. But rural migrants suffer much more discrimination than urban migrants. The persistent link between local hukou status and jobs, access to social benefits and services results in continuing discrimination against migrants. Migrants’ positions are further depressed by the huge labour supply, migrants’ lower job expectations, their toleration of discrimination and companies’ violation of labour law. Hence, the thesis argues that the urban labour market in Shanghai’s manufacturing sector has remained divided between migrants and local workers, because barriers still exist preventing migrants from competing fully with local residents. Lastly, some policy recommendations are made to reduce labour market discrimination for both efficiency and equity.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: Insights gained from batch experiments and XANES spectroscopy

    Get PDF
    The soil chemistry of phosphorus (P) is important for understanding the processes governing plant availability as well as the risk of environmental losses of P. The objective of this research was to investigate both the speciation and the pH-dependent solubility patterns of P in clayey agricultural soils in relation to soil mineralogy and fertilization history. The study focused on soil samples from six fields that were subjected to different P fertilization regimes for periods of 45 to 57 years. Soil P speciation was analyzed by P K-edge XANES spectroscopy and chemical fractionation, sorption isotherms were constructed, and dissolved P was measured as a function of pH. The XANES fitting results showed that organic P and P adsorbed to Fe and Al (hydr) oxides were common P constituents in all soils. Calciumphosphateswere identified in five of six soil samples. The XANES results also indicated an increase in P adsorbed to Al and to a lesser extent Fe (hydr) oxides as a result of fertilization. Moreover, the fluorescence intensity from the P K-edge XANES analysis was most strongly correlated with HCl-digestible P (r = 0.81***). Consistent with the XANES analysis, laboratory sorption isotherm models showed that the Freundlich sorption coefficient (K-F) was most closely related to oxalate-extractable Al. Greater proportions of Ca phosphate in two of the heavily fertilized soils in combination with enhanced PO4 solubilization upon sample acidification indicated neoformation of Ca-phosphate precipitates. The results for the unfertilized soil samples generally showed a minimum in dissolved PO4 between pH 6.5 and 7.5, with increases particularly at lower pH. This behavior can be explained either by the dissolution of Al-hydroxide-type sorbents or Ca phosphates at lower pH. In fertilized soils, there was no consistent trend in pH-dependent solubilization of P, with a complex relationship to solid-phase speciation. To conclude, inorganic P species changed most dynamically in agricultural clay soils over a period of several decades, and the role of pH in the solubilization of P depended mainly on P fertilization history and the content of reactive Ca phosphates. (C) 2016 Elsevier B.V. All rights reserved

    Efficacy of a Phosphate-Charged Soil Material in Supplying Phosphate for Plant Growth in Soilless Root Media

    No full text
    A soil material high in crystalline Fe hydrous oxides and noncrystalline Al hydrous oxides collected from the Bw horizon of a Hemcross soil containing allophane from the state of Oregon was charged with phosphate-P at rates of 0, 2.2, and 6.5 mg·g−1, added to a soilless root medium at 5% and 10% by volume, and evaluated for its potential to supply phosphate at a low, stable concentration during 14 weeks of tomato (Solanum esculentum L.) seedling growth. Incorporation of the soil material improved pH stability, whether it was charged with phosphate or not. Bulk solution phosphate-P concentrations in the range of 0.13 to 0.34 mg·dm−3 were associated with P deficiency. The only treatment that sustained an adequate bulk solution concentration of phosphate-P above 0.34 mg·dm−3 for the 14 weeks of testing contained 10% soil material charged with 6.5 mg·g−1 P, but initial dissolved P concentrations were too high (>5 mg·g−1 phosphate-P) from the standpoint of phosphate leaching. The treatment amended with 10% soil material charged with 2.2 mg·g−1 P maintained phosphate-P within an acceptable range of 0.4 to 2.3 mg·dm−3 for 48 d in a medium receiving no postplant phosphate fertilization
    corecore