1,090 research outputs found
Realization of a Tunable Artificial Atom at a Supercritically Charged Vacancy in Graphene
The remarkable electronic properties of graphene have fueled the vision of a
graphene-based platform for lighter, faster and smarter electronics and
computing applications. One of the challenges is to devise ways to tailor its
electronic properties and to control its charge carriers. Here we show that a
single atom vacancy in graphene can stably host a local charge and that this
charge can be gradually built up by applying voltage pulses with the tip of a
scanning tunneling microscope (STM). The response of the conduction electrons
in graphene to the local charge is monitored with scanning tunneling and Landau
level spectroscopy, and compared to numerical simulations. As the charge is
increased, its interaction with the conduction electrons undergoes a transition
into a supercritical regime 6-11 where itinerant electrons are trapped in a
sequence of quasi-bound states which resemble an artificial atom. The
quasi-bound electron states are detected by a strong enhancement of the density
of states (DOS) within a disc centered on the vacancy site which is surrounded
by halo of hole states. We further show that the quasi-bound states at the
vacancy site are gate tunable and that the trapping mechanism can be turned on
and off, providing a new mechanism to control and guide electrons in grapheneComment: 18 pages and 5 figures plus 14 pages and 15 figures of supplementary
information. Nature Physics advance online publication, Feb 22 (2016
Selective expansion of viral variants following experimental transmission of a reconstituted feline immunodeficiency virus quasispecies
Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development
Deciphering interplay between Salmonella invasion effectors
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction
Home-based versus centre-based cardiac rehabilitation (Review)
This is the final version. Available from the Cochrane Collaboration via the DOI in this recordBACKGROUND: Cardiovascular disease is the most common cause of death globally. Traditionally, centre-based cardiac rehabilitation programmes are offered to individuals after cardiac events to aid recovery and prevent further cardiac illness. Home-based and technology-supported cardiac rehabilitation programmes have been introduced in an attempt to widen access and participation, especially during the SARS-CoV-2 pandemic. This is an update of a review previously published in 2009, 2015, and 2017. OBJECTIVES: To compare the effect of home-based (which may include digital/telehealth interventions) and supervised centre-based cardiac rehabilitation on mortality and morbidity, exercise-capacity, health-related quality of life, and modifiable cardiac risk factors in patients with heart disease SEARCH METHODS: We updated searches from the previous Cochrane Review by searching the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (Ovid), Embase (Ovid), PsycINFO (Ovid) and CINAHL (EBSCO) on 16 September 2022. We also searched two clinical trials registers as well as previous systematic reviews and reference lists of included studies. No language restrictions were applied. SELECTION CRITERIA: We included randomised controlled trials that compared centre-based cardiac rehabilitation (e.g. hospital, sports/community centre) with home-based programmes (± digital/telehealth platforms) in adults with myocardial infarction, angina, heart failure, or who had undergone revascularisation. DATA COLLECTION AND ANALYSIS: Two review authors independently screened all identified references for inclusion based on predefined inclusion criteria. Disagreements were resolved through discussion or by involving a third review author. Two authors independently extracted outcome data and study characteristics and assessed risk of bias. Certainty of evidence was assessed using GRADE. MAIN RESULTS: We included three new trials in this update, bringing a total of 24 trials that have randomised a total of 3046 participants undergoing cardiac rehabilitation. A further nine studies were identified and are awaiting classification. Manual searching of trial registers until 16 September 2022 revealed a further 14 clinical trial registrations - these are ongoing. Participants had a history of acute myocardial infarction, revascularisation, or heart failure. Although there was little evidence of high risk of bias, a number of studies provided insufficient detail to enable assessment of potential risk of bias; in particular, details of generation and concealment of random allocation sequencing and blinding of outcome assessment were poorly reported. No evidence of a difference was seen between home- and centre-based cardiac rehabilitation in our primary outcomes up to 12 months of follow-up: total mortality (risk ratio [RR] = 1.19, 95% confidence interval [CI] 0.65 to 2.16; participants = 1647; studies = 12/comparisons = 14; low-certainty evidence) or exercise capacity (standardised mean difference (SMD) = -0.10, 95% CI -0.24 to 0.04; participants = 2343; studies = 24/comparisons = 28; low-certainty evidence). The majority of evidence (N=71 / 77 comparisons of either total or domain scores) showed no significant difference in health-related quality of life up to 24 months follow-up between home- and centre-based cardiac rehabilitation. Trials were generally of short duration, with only three studies reporting outcomes beyond 12 months (exercise capacity: SMD 0.11, 95% CI -0.01 to 0.23; participants = 1074; studies = 3; moderate-certainty evidence). There was a similar level of trial completion (RR 1.03, 95% CI 0.99 to 1.08; participants = 2638; studies = 22/comparisons = 26; low-certainty evidence) between home-based and centre-based participants. The cost per patient of centre- and home-based programmes was similar. AUTHORS' CONCLUSIONS: This update supports previous conclusions that home- (± digital/telehealth platforms) and centre-based forms of cardiac rehabilitation formally supported by healthcare staff seem to be similarly effective in improving clinical and health-related quality of life outcomes in patients after myocardial infarction, or revascularisation, or with heart failure. This finding supports the continued expansion of healthcare professional supervised home-based cardiac rehabilitation programmes (± digital/telehealth platforms), especially important in the context of the ongoing global SARS-CoV-2 pandemic that has much limited patients in face-to-face access of hospital and community health services. Where settings are able to provide both supervised centre- and home-based programmes, consideration of the preference of the individual patient would seem appropriate. Although not included in the scope of this review, there is an increasing evidence base supporting the use of hybrid models that combine elements of both centre-based and home-based cardiac rehabilitation delivery. Further data are needed to determine: (1) whether the short-term effects of home/digital-telehealth and centre-based cardiac rehabilitation models of delivery can be confirmed in the longer term; (2) the relative clinical effectiveness and safety of home-based programmes for other heart patients, e.g. post-valve surgery and atrial fibrillation.National Institute for Health and Care Research (NIHR
Application of Graphene within Optoelectronic Devices and Transistors
Scientists are always yearning for new and exciting ways to unlock graphene's
true potential. However, recent reports suggest this two-dimensional material
may harbor some unique properties, making it a viable candidate for use in
optoelectronic and semiconducting devices. Whereas on one hand, graphene is
highly transparent due to its atomic thickness, the material does exhibit a
strong interaction with photons. This has clear advantages over existing
materials used in photonic devices such as Indium-based compounds. Moreover,
the material can be used to 'trap' light and alter the incident wavelength,
forming the basis of the plasmonic devices. We also highlight upon graphene's
nonlinear optical response to an applied electric field, and the phenomenon of
saturable absorption. Within the context of logical devices, graphene has no
discernible band-gap. Therefore, generating one will be of utmost importance.
Amongst many others, some existing methods to open this band-gap include
chemical doping, deformation of the honeycomb structure, or the use of carbon
nanotubes (CNTs). We shall also discuss various designs of transistors,
including those which incorporate CNTs, and others which exploit the idea of
quantum tunneling. A key advantage of the CNT transistor is that ballistic
transport occurs throughout the CNT channel, with short channel effects being
minimized. We shall also discuss recent developments of the graphene tunneling
transistor, with emphasis being placed upon its operational mechanism. Finally,
we provide perspective for incorporating graphene within high frequency
devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and
the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
Consequence of the tumor-associated conversion to cyclin D1b.
Clinical evidence suggests that cyclin D1b, a variant of cyclin D1, is associated with tumor progression and poor outcome. However, the underlying molecular basis was unknown. Here, novel models were created to generate a genetic switch from cyclin D1 to cyclin D1b. Extensive analyses uncovered overlapping but non-redundant functions of cyclin D1b compared to cyclin D1 on developmental phenotypes, and illustrated the importance of the transcriptional regulatory functions of cyclin D1b in vivo. Data obtained identify cyclin D1b as an oncogene, wherein cyclin D1b expression under the endogenous promoter induced cellular transformation and further cooperated with known oncogenes to promote tumor growth in vivo. Further molecular interrogation uncovered unexpected links between cyclin D1b and the DNA damage/PARP1 regulatory networks, which could be exploited to suppress cyclin D1b-driven tumors. Collectively, these data are the first to define the consequence of cyclin D1b expression on normal cellular function, present evidence for cyclin D1b as an oncogene, and provide pre-clinical evidence of effective methods to thwart growth of cells dependent upon this oncogenic variant
Design of Experiments for Screening
The aim of this paper is to review methods of designing screening
experiments, ranging from designs originally developed for physical experiments
to those especially tailored to experiments on numerical models. The strengths
and weaknesses of the various designs for screening variables in numerical
models are discussed. First, classes of factorial designs for experiments to
estimate main effects and interactions through a linear statistical model are
described, specifically regular and nonregular fractional factorial designs,
supersaturated designs and systematic fractional replicate designs. Generic
issues of aliasing, bias and cancellation of factorial effects are discussed.
Second, group screening experiments are considered including factorial group
screening and sequential bifurcation. Third, random sampling plans are
discussed including Latin hypercube sampling and sampling plans to estimate
elementary effects. Fourth, a variety of modelling methods commonly employed
with screening designs are briefly described. Finally, a novel study
demonstrates six screening methods on two frequently-used exemplars, and their
performances are compared
Semi-supervised discovery of differential genes
BACKGROUND: Various statistical scores have been proposed for evaluating the significance of genes that may exhibit differential expression between two or more controlled conditions. However, in many clinical studies to detect clinical marker genes for example, the conditions have not necessarily been controlled well, thus condition labels are sometimes hard to obtain due to physical, financial, and time costs. In such a situation, we can consider an unsupervised case where labels are not available or a semi-supervised case where labels are available for a part of the whole sample set, rather than a well-studied supervised case where all samples have their labels. RESULTS: We assume a latent variable model for the expression of active genes and apply the optimal discovery procedure (ODP) proposed by Storey (2005) to the model. Our latent variable model allows gene significance scores to be applied to unsupervised and semi-supervised cases. The ODP framework improves detectability by sharing the estimated parameters of null and alternative models of multiple tests over multiple genes. A theoretical consideration leads to two different interpretations of the latent variable, i.e., it only implicitly affects the alternative model through the model parameters, or it is explicitly included in the alternative model, so that the interpretations correspond to two different implementations of ODP. By comparing the two implementations through experiments with simulation data, we have found that sharing the latent variable estimation is effective for increasing the detectability of truly active genes. We also show that the unsupervised and semi-supervised rating of genes, which takes into account the samples without condition labels, can improve detection of active genes in real gene discovery problems. CONCLUSION: The experimental results indicate that the ODP framework is effective for hypotheses including latent variables and is further improved by sharing the estimations of hidden variables over multiple tests
- …