2,453 research outputs found

    Health benefits from nature experiences depend on dose

    Get PDF
    Nature within cities will have a central role in helping address key global public health 3 challenges associated with urbanization. However, there is almost no guidance on how much 4 or how frequently people need to engage with nature, and what types or characteristics of 5 nature need to be incorporated in cities for the best health outcomes. Here we use a nature 6 dose framework to examine the associations between the duration, frequency and intensity of 7 exposure to nature and health in an urban population. We show that people who made long 8 visits to green spaces had lower rates of depression and high blood pressure, and those who 9 visited more frequently had greater social cohesion. Higher levels of physical activity were 10 linked to both duration and frequency of green space visits. A dose-response analysis for 11 depression and high blood pressure suggest that visits to outdoor green spaces of 30 minutes 12 or more during the course of a week could reduce the population prevalence of these illnesses 13 by up to 7% and 9% respectively. Given that the societal costs of depression alone in 14 Australia are estimated at AUD$12.6 billion per annum, savings to public health budgets 15 across all health outcomes could be immense.D.F.S. is supported through ARC Discovery Grant DP120102857 and the Centre of Excellence for Environmental Decisions (CEED, Australia); R.A.F. holds an ARC Future Fellowship; B.B.L. is supported through the CSIRO Land and Water Flagship; and K.J.G. is supported by NERC grant NE/J015237/1. J. Rhodes, K. Johansen and S. Wu contributed to the development of the vegetation data. Authors would like to thank the Brisbane City Council for providing GIS data layers, the Department of Science, Information Technology and Innovation and the Department of Natural Resources and Mines, QLD for providing access to the airborne LiDAR

    Pump-probe measurements of gain in a terahertz quantum cascade laser

    Get PDF
    The gain recovery time of a bound-to-continuum terahertz frequency quantum cascade laser, operating at 1.98 THz, has been measured using broadband terahertz-pump-terahertz-probe spectroscopy. The recovery time is found to reduce as a function of current density, reaching a value of 18 ps as the laser is brought close to threshold. We attribute this reduction to improved coupling efficiency between the injector state and the upper lasing level as the active region aligns

    Supersymmetric Vacua in Random Supergravity

    Full text link
    We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N >> 1. We conclude that for |W| \gtrsim m_{susy}/N, tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.Comment: 26 pages, 6 figure

    Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb

    Get PDF
    High resolution spectroscopy can not only identify atoms and molecules, but can also provide detailed information on their chemical and physical environment, and relative motion. In the terahertz frequency region of the electromagnetic spectrum, where many molecules have fundamental vibrational modes, there is a lack of powerful sources with narrow linewidths that can be used for absorption measurements or as local oscillators in heterodyne detectors. The most promising solid-state source is the THz frequency quantum cascade laser (QCL), however, the linewidth of this compact semiconductor laser is typically too broad for many applications and its frequency is not directly referenced to primary frequency standards. In this work we injection lock a QCL operating at 2 THz to a compact fibre-based telecommunications wavelength frequency comb, where the comb line spacing is referenced to a microwave frequency reference. This results in the QCL frequency locking to an integer harmonic of the microwave reference, and the QCL linewidth reducing to the multiplied linewidth of the microwave reference, < 100 Hz. Furthermore, we perform phase-resolved detection of the locked QCL and measure the phase noise of the locked system to be –75 dBc/Hz at 10 kHz offset from 2 THz carrier

    Terahertz emission mechanism and laser excitation position dependence of nano-grating electrode photomixers

    Get PDF
    The emission mechanism of continuous wave (CW) terahertz (THz) photomixers that make use of nanostructured gratings (NSGs) is studied. Two different photomixer designs, based on a single-sided NSG and a double-sided NSG, embedded in the same antenna design and fabricated on an Fe doped InGaAsP substrate, are characterized with ∼1550 nm excitation. They are shown to exhibit similar performance in terms of spectral bandwidth and emitted power. The emission is mapped in terms of the laser excitation position, from which the emission mechanism is assigned to an enhanced optical electric field at the tips of the NSGs

    Narrow-band injection seeding of a terahertz frequency quantum cascade laser: Selection and suppression of longitudinal modes

    Get PDF
    A periodically poled lithium niobate (PPLN) crystal with multiple poling periods is used to generate tunable narrow-bandwidth THz pulses for injection seeding a quantum cascade laser (QCL). We demonstrate that longitudinal modes of the quantum cascade laser close to the gain maximum can be selected or suppressed according to the seed spectrum. The QCL emission spectra obtained by electro-optic sampling from the quantum cascade laser, in the most favorable case, shows high selectivity and amplification of the longitudinal modes that overlap the frequency of the narrow-band seed. Proper selection of the narrow-band THz seed from the PPLN crystal discretely tunes the longitudinal mode emission of the quantum cascade laser. Moreover, the THz wave build-up within the laser cavity is studied as a function of the round-trip time. When the seed frequency is outside the maximum of the gain spectrum the laser emission shifts to the preferential longitudinal mode

    Investigation of time-resolved gain dynamics in an injection seeded terahertz quantum cascade laser

    Get PDF
    The evolution of the gain of terahertz quantum cascade laser during injection seeding is probed as a function of time. Oscillations of the gain are commensurate with the variations of the field envelope

    Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells

    Get PDF
    Ablation of LGR5+ intestinal stem cells (ISCs) is associated with rapid restoration of the ISC compartment. Different intestinal crypt populations dedifferentiate to provide new ISCs, but the transcriptional and signaling trajectories that guide this process are unclear, and a large body of work suggests that quiescent “reserve” ISCs contribute to regeneration. By timing the interval between LGR5+ lineage tracing and lethal injury, we show that ISC regeneration is explained nearly completely by dedifferentiation, with contributions from absorptive and secretory progenitors. The ISC-restricted transcription factor ASCL2 confers measurable competitive advantage to resting ISCs and is essential to restore the ISC compartment. Regenerating cells re-express Ascl2 days before Lgr5, and single-cell RNA sequencing (scRNA-seq) analyses reveal transcriptional paths underlying dedifferentiation. ASCL2 target genes include the interleukin-11 (IL-11) receptor Il11ra1, and recombinant IL-11 enhances crypt cell regenerative potential. These findings reveal cell dedifferentiation as the principal means for ISC restoration and highlight an ASCL2-regulated signal that enables this adaptive response
    corecore