1,348 research outputs found

    Comparing full-field data from structural components with complicated geometries

    Get PDF
    A new decomposition algorithm based on QR factorization is introduced for processing and comparing irregularly shaped stress and deformation datasets found in structural analysis. The algorithm improves the comparison of two-dimensional data fields from the surface of components where data is missing from the field of view due to obstructed measurement systems or component geometry that results in areas where no data is present. The technique enables the comparison of these irregularly shaped datasets without the need for interpolation or warping of the data necessary in some other decomposition techniques, for example, Chebyshev or Zernike decomposition. This ensures comparisons are only made between the available data in each dataset and thus similarity metrics are not biased by missing data. The decomposition and comparison technique has been applied during an impact experiment, a modal analysis, and a fatigue study, with the stress and displacement data obtained from finite-element analysis, digital image correlation and thermoelastic stress analysis. The results demonstrate that the technique can be used to process data from a range of sources and suggests the technique has the potential for use in a wide variety of applications

    STM Spectroscopy of ultra-flat graphene on hexagonal boron nitride

    Full text link
    Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.Comment: Nature Materials advance online publication 13/02/201

    Genetic diversity of Brazilian isolates of feline immunodeficiency virus

    Get PDF
    We isolated Feline immunodeficiency virus (FIV) from three adult domestic cats, originating from two open shelters in Brazil. Viruses were isolated from PBMC following co-cultivation with the feline T-lymphoblastoid cell line MYA-1. All amplified env gene products were cloned directly into pGL8MYA. The nucleic acid sequences of seven clones were determined and then compared with those of previously described isolates. The sequences of all of the Brazilian virus clones were distinct and phylogenetic analysis revealed that all belong to subtype B. Three variants isolated from one cat and two variants were isolated from each of the two other cats, indicating that intrahost diversity has the potential to pose problems for the treatment and diagnosis of FIV infection

    Identification of novel subgroup a variants with enhanced receptor binding and replicative capacity in primary isolates of anaemogenic strains of feline leukaemia virus

    Get PDF
    <b>BACKGROUND:</b> The development of anaemia in feline leukaemia virus (FeLV)-infected cats is associated with the emergence of a novel viral subgroup, FeLV-C. FeLV-C arises from the subgroup that is transmitted, FeLV-A, through alterations in the amino acid sequence of the receptor binding domain (RBD) of the envelope glycoprotein that result in a shift in the receptor usage and the cell tropism of the virus. The factors that influence the transition from subgroup A to subgroup C remain unclear, one possibility is that a selective pressure in the host drives the acquisition of mutations in the RBD, creating A/C intermediates with enhanced abilities to interact with the FeLV-C receptor, FLVCR. In order to understand further the emergence of FeLV-C in the infected cat, we examined primary isolates of FeLV-C for evidence of FeLV-A variants that bore mutations consistent with a gradual evolution from FeLV-A to FeLV-C.<p></p> <b>RESULTS:</b> Within each isolate of FeLV-C, we identified variants that were ostensibly subgroup A by nucleic acid sequence comparisons, but which bore mutations in the RBD. One such mutation, N91D, was present in multiple isolates and when engineered into a molecular clone of the prototypic FeLV-A (Glasgow-1), enhanced replication was noted in feline cells. Expression of the N91D Env on murine leukaemia virus (MLV) pseudotypes enhanced viral entry mediated by the FeLV-A receptor THTR1 while soluble FeLV-A Env bearing the N91D mutation bound more efficiently to mouse or guinea pig cells bearing the FeLV-A and -C receptors. Long-term in vitro culture of variants bearing the N91D substitution in the presence of anti-FeLV gp70 antibodies did not result in the emergence of FeLV-C variants, suggesting that additional selective pressures in the infected cat may drive the subsequent evolution from subgroup A to subgroup C.<p></p> <b>CONCLUSIONS:</b> Our data support a model in which variants of FeLV-A, bearing subtle differences in the RBD of Env, may be predisposed towards enhanced replication in vivo and subsequent conversion to FeLV-C. The selection pressures in vivo that drive the emergence of FeLV-C in a proportion of infected cats remain to be established

    Medication administration errors for older people in long-term residential care

    Get PDF
    Background Older people in long-term residential care are at increased risk of medication errors. The purpose of this study was to evaluate a computerised barcode medication management system designed to improve drug administrations in residential and nursing homes, including comparison of error rates and staff awareness in both settings. Methods All medication administrations were recorded prospectively for 345 older residents in thirteen care homes during a 3-month period using the computerised system. Staff were surveyed to identify their awareness of administration errors prior to system introduction. Overall, 188,249 attempts to administer medication were analysed to determine the prevalence of potential medication administration errors (MAEs). Error classifications included attempts to administer medication at the wrong time, to the wrong person or discontinued medication. Analysis compared data at residential and nursing home level and care and nursing staff groups. Results Typically each resident was exposed to 206 medication administration episodes every month and received nine different drugs. Administration episodes were more numerous (p < 0.01) in nursing homes (226.7 per resident) than in residential homes (198.7). Prior to technology introduction, only 12% of staff administering drugs reported they were aware of administration errors being averted in their care home. Following technology introduction, 2,289 potential MAEs were recorded over three months. The most common MAE was attempting to give medication at the wrong time. On average each resident was exposed to 6.6 potential errors. In total, 90% of residents were exposed to at least one MAE with over half (52%) exposed to serious errors such as attempts to give medication to the wrong resident. MAEs rates were significantly lower (p < 0.01) in residential homes than nursing homes. The level of non-compliance with system alerts was low in both settings (0.075% of administrations) demonstrating virtually complete error avoidance. Conclusion Potentially inappropriate administration of medication is a serious problem in long-term residential care. A computerised barcode system can accurately and automatically detect inappropriate attempts to administer drugs to residents. This tool can reliably be used by care staff as well as nurses to improve quality of care and patient safety

    Retrospective analysis of Schlafen11 (SLFN11) to predict the outcomes to therapies affecting the DNA damage response

    Get PDF
    BACKGROUND: The absence of the putative DNA/RNA helicase Schlafen11 (SLFN11) is thought to cause resistance to DNAdamaging agents (DDAs) and PARP inhibitors. METHODS: We developed and validated a clinically applicable SLFN11 immunohistochemistry assay and retrospectively correlated SLFN11 tumour levels to patient outcome to the standard of care therapies and olaparib maintenance. RESULTS: High SLFN11 associated with improved prognosis to the first-line treatment with DDAs platinum-plus-etoposide in SCLC patients, but was not strongly linked to paclitaxel–platinum response in ovarian cancer patients. Multivariate analysis of patients with relapsed platinum-sensitive ovarian cancer from the randomised, placebo-controlled Phase II olaparib maintenance Study19 showed SLFN11 tumour levels associated with sensitivity to olaparib. Study19 patients with high SLFN11 had a lower progression-free survival (PFS) hazard ratio compared to patients with low SLFN11, although both groups had the benefit of olaparib over placebo. Whilst caveated by small sample size, this trend was maintained for PFS, but not overall survival, when adjusting for BRCA status across the olaparib and placebo treatment groups, a key driver of PARP inhibitor sensitivity. CONCLUSION: We provide clinical evidence supporting the role of SLFN11 as a DDA therapy selection biomarker in SCLC and highlight the need for further clinical investigation into SLFN11 as a PARP inhibitor predictive biomarker

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Modulation of the virus-receptor interaction by mutations in the V5 loop of feline immunodeficiency virus (FIV) following in vivo escape from neutralising antibody

    Get PDF
    &lt;b&gt;BACKGROUND:&lt;/b&gt; In the acute phase of infection with feline immunodeficiency virus (FIV), the virus targets activated CD4+ T cells by utilising CD134 (OX40) as a primary attachment receptor and CXCR4 as a co-receptor. The nature of the virus-receptor interaction varies between isolates; strains such as GL8 and CPGammer recognise a "complex" determinant on CD134 formed by cysteine-rich domains (CRDs) 1 and 2 of the molecule while strains such as PPR and B2542 require a more "simple" determinant comprising CRD1 only for infection. These differences in receptor recognition manifest as variations in sensitivity to receptor antagonists. In this study, we ask whether the nature of the virus-receptor interaction evolves in vivo.&lt;p&gt;&lt;/p&gt; &lt;b&gt;RESULTS:&lt;/b&gt; Following infection with a homogeneous viral population derived from a pathogenic molecular clone, a quasispecies emerged comprising variants with distinct sensitivities to neutralising antibody and displaying evidence of conversion from a "complex" to a "simple" interaction with CD134. Escape from neutralising antibody was mediated primarily by length and sequence polymorphisms in the V5 region of Env, and these alterations in V5 modulated the virus-receptor interaction as indicated by altered sensitivities to antagonism by both anti-CD134 antibody and soluble CD134.&lt;p&gt;&lt;/p&gt; &lt;b&gt;CONCLUSIONS:&lt;/b&gt; The FIV-receptor interaction evolves under the selective pressure of the host humoral immune response, and the V5 loop contributes to the virus-receptor interaction. Our data are consistent with a model whereby viruses with distinct biological properties are present in early versus late infection and with a shift from a "complex" to a "simple" interaction with CD134 with time post-infection.&lt;p&gt;&lt;/p&gt
    • …
    corecore