862 research outputs found

    Do Parking Requirements Significantly Increase The Area Dedicated To Parking? A Test Of The Effect Of Parking Requirements Values In Los Angeles County

    Get PDF
    Minimum parking requirements are the norm for urban and suburban development in the United States (Davidson and Dolnick (2002)). The justification for parking space requirements is that overflow parking will occupy nearby street or off-street parking. Shoup (1999) and Willson (1995) provides cases where there is reason to believe that parking space requirements have forced parcel developers to place more parking than they would in the absence of parking requirements. If the effect of parking minimums is to significantly increase the land area devoted to parking, then the increase in impervious surfaces would likely cause water quality degradation, increased flooding, and decreased groundwater recharge. However, to our knowledge the existing literature does not test the effect of parking minimums on the amount of lot space devoted to parking beyond a few case studies. This paper tests the hypothesis that parking space requirements cause an oversupply of parking by examining the implicit marginal value of land allocated to parking spaces. This is an indirect test of the effects of parking requirements that is similar to Glaeser and Gyourko (2003). A simple theoretical model shows that the marginal value of additional parking to the sale price should be equal to the cost of land plus the cost of parking construction. We estimate the marginal values of parking and lot area with spatial methods using a large data set from the Los Angeles area non-residential property sales and find that for most of the property types the marginal value of parking is significantly below that of the parcel area. This evidence supports the contention that minimum parking requirements significantly increase the amount of parcel area devoted to parking.Minimum Parking Requirements; Land Use; Externalities

    Servomechanism compensation with an active phase-lead network

    Get PDF
    The problem is to develop a phase-lead compensation network for a servomechanism which will not reduce the low-frequency gain and thus decrease the velocity-lag error. The principal part of this thesis deals with the design of such an active phase-lead network. The active network does not have d-c coupling; this eliminates drift problems. To illustrate an active phase-lead network a simple second order servomechanism is used as a basis for comparing three methods of compensation. The first method is compensation with a conventional phase-lead network with a gain decrease. The second method is compensation with a conventional phase-lead network with a gain increase. The third method is compensation with an active phase-lead network with no gain change. The three compensated systems were selected to have about the same peak overshoot but not necessarily the same rise time. The basic servomechanism was simulated on the MSM Analog Computer and used to design the active phase-lead network. Photographic recordings were made to illustrate the effectiveness of the design --Introduction, page 1

    Genetic and morphological differentiation in Populus nigra L.:isolation by colonization or isolation by adaptation?

    Get PDF
    Identifying processes underlying the genetic and morphological differences among populations is a central question of evolutionary biology. Forest trees typically contain high levels of neutral genetic variation, and genetic differences are often correlated with geographic distance between populations [isolation by distance (IBD)] or are due to historic vicariance events [isolation by colonization (IBC)]. In contrast, morphological differences are largely due to local adaptation. Here, we examined genetic (microsatellite) and morphological (from a common garden experiment) variation in Populus nigra L., European black poplar, collected from 13 sites across western Europe and grown in a common garden in Belgium. Significant genetic differentiation was observed, with populations from France displaying greater admixture than the distinct Spanish and central European gene pools, consistent with previously described glacial refugia (IBC). Many quantitative traits displayed a bimodal distribution, approximately corresponding to small-leaf and large-leaf ecotypes. Examination of nine climatic variables revealed the sampling locations to have diverse climates, and although the correlation between morphological and climatic differences was significant, the pattern was not consistent with strict local adaptation. Partial Mantel tests based on multivariate summary statistics identified significant residual correlation in comparisons of small-leaf to large-leaf ecotypes, and within the small-leaf samples, but not within large-leaf ecotypes, indicating that variation within the small-leaf morphotype in particular may be adaptive. Some small-leaf populations experience climates very similar to those in large-leaf sites. We conclude that adaptive differentiation and persistent IBC acted in combination to produce the genetic and morphological patterns observed in P. nigra

    Reduction of Automobile and Aircraft Collisions with Wildlife in Indiana

    Get PDF
    Conflicts between wildlife and human interests have increased in recent decades due to growing human populations and the resulting expansion of anthropogenic pressures into wildlife habitat. Our overall objectives were to evaluate the the potential impacts of wildlife on transportation in Indiana and vice-versa. The results presented in this final report summarize two aspects of our research: the impact of automotive traffic on wildlife (“road kill”; Part I), and the wildlife hazards present at general aviation airports around the state (“airstrike”; Part II). The road kill dataset indicated that at 13 survey routes traversing 180 linear km of road, 11,068 animals were killed by traffic. These animals included mammals, birds, reptiles, and (mostly) amphibians. GIS data indicates that nearby wetlands were typically associated with a high incidence of road kill. While road kills were detected in all months, there were obvious seasonal and weather related patterns in the data. Most road kills occurred from July through September, which was concurrent with peak temperatures and precipitation levels. We highlight a variety of animal-friendly engineering options that can be used to effectively reduce encounters between wildlife and drivers, resulting in fewer accidents and less road kill. With regard to the airstrike dataset, airport habitats consisted mainly of short grass (40.2% of total airport area), soybean fields (10.3%), corn fields (9.5%), runway systems (8.1%), other development (6.6%), woodlots (5.2%), medium grass (4.8%), tall grass (4.6%), and hayfields (3.2%). At least two types of wildlife attractants were present at each airport property, and the most common wildlife attractants included standing water (ephemeral), open culverts, crop fields, woodlot refugia, and gravel piles. Proportion of airport perimeters fenced ranged from 7.5% to 100%, but most airport perimeters were \u3e40% fenced. Most airports with \u3e25% of the perimeter enclosed by chain-link fencing had 0.2-0.5 openings per 100 m of fence, with gaps and dig-holes being the most common openings. Considering the most hazardous species, 0-92 white-tailed deer and 0-28 coyotes were observed at individual airports combining all survey methods across a year. Of 16 bird species groups identified as hazardous to aircraft, American kestrel, blackbirds-starling, crows-ravens, mourning dove, shorebirds, sparrows, and swallows were present at 9-10 of the airport properties; geese, hawks (buteos), and vultures were present at 7-8 of the airport properties; and ducks, herons, and rock doves were present at 5-6. Questionnaires indicated that pilots using focal airports were accustomed to wildlife hazards: 69% of respondents reported that they had altered aircraft operation due to wildlife within the past year, and 25% reported involvement in a wildlife strike during the past year. Furthermore, 88% of respondents felt that wildlife populations at Indiana airports were at least “somewhat hazardous”. Despite pilots’ awareness of wildlife hazards, less than 70% of respondents supported the use of fencing or wildlife deterrents, 43% supported modification/elimination of wildlife habitat, and only 38% of respondents supported for lethal removal of wildlife on airport properties. Hazards associated with deer and coyotes can be alleviated by installing suitable fencing; for airports with extant fences, care should be taken to monitor fences regularly and repair gaps as soon as they are discovered. Presence of deer and coyotes inside airport fences should not be tolerated. Birds are best managed by maintaining airport habitats in a manner that minimizes availability and/or quality of food, water, cover, and loafing sites for hazardous species. Furthermore, several new technologies and refinements in techniques for wildlife damage management at airports have emerged recently and may benefit small airports, such as advancements in electric fencing and the use of dead bird effigies to repel some hazardous bird species

    Captive Breeding Protocols and Their Impact on Genetic Diversity in White-footed Mice (Peromyscus leucopus): Implications for Threatened and Endangered Species

    Get PDF
    Captive breeding protocols used in zoos often are aimed at increasing population sizes and retaining genetic diversity of endangered species. However, captive breeding causes genetic adaptation to captivity that can lead to an overall decrease in genetic diversity and reduce chances of a successful reintroduction to the wild. In this study, we assess how 3 different breeding protocols—random mating, preferential breeding of individuals with the lowest mean kinship scores, and selection for docility—affect the variability of mitochondrial DNA in white-footed mice (Peromyscus leucopus). We used mice that were captured from the wild but were mated for up to 20 generations using one of the aforementioned breeding protocols. Using animals from generations 0, 6, and 19, as well as the wild source population, we sequenced the mitochondrial D-loop in 2 replicate populations representing each of the 3 breeding protocols. Initial sequences indicate there is genetic variation at this mitochondrial locus, and further sequencing will allow us to quantify the genetic diversity maintained under each breeding protocol. These results will increase our understanding of the decline in genetic diversity due to adaptation to captivity. Thus, our results will have direct relevance for the maintenance and growth of zoo populations of critically endangered species
    • …
    corecore