3,427 research outputs found
The Heart Wants What It Wants: Effects of Desirability and Body Part Salience on Distance Perceptions (DeWitt)
Previous research has shown that the desirability of an object influences perceived distance from the object, such that desirable objects are perceived as closer than objects that are not desirable (Balcetis & Dunning, 2010). It has also been suggested that metaphors reflect how our knowledge is represented; so, for example, making the head or heart more salient produces characteristics commonly associated with those body parts (i.e., emotionality for the heart and rationality for the head) (Fetterman & Robinson, 2013). The current study examined the effects of head or heart salience and desirability on distance perception. We hypothesized that since common idioms relate the heart to desirability, salience of the heart would cause desirable objects to be perceived as closer than would salience of the head, but there would be no such difference between the head and heart conditions when the object was neutral. To test this hypothesis, participants had their attention drawn to either their head or their heart by placing their index finger there while throwing a beanbag towards a desirable or a neutral object. In Experiment 2, a verbal distance estimate was also included. We predicted that there would be a significant interaction between desirability of object and hand placement. Specifically, we expected that there would be no effect of hand placement when the object was neutral but that heart-pointers would perceive a desirable object as closer than the head-pointers. Results from both experiments failed to support our hypothesis
Materials thermal and thermoradiative properties/characterization technology
Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered
Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.
The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828
Strongly magnetized classical plasma models
Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model)
Radiation Information from 1958 δ2
The telemetered radiation information from the satellite 1958 δ2
(Sputnik III) has been analyzed for sixty-two separate passes recorded
in College, Alaska. The data indicate a dependence of radiation intensity
on altitude in the range 250-500 km. Both the high and low
energy components apparently contribute to the overall increase of
intensity with altitude, but the presence of a continuous afterglow
in the scintillating crystal prevented detailed interpretation of the
results.IGY Project No. 32.42
NSF Grant No. Y/32.42/268Ye
Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion
We present an analytic method based on the Hadamard-WKB expansion to
calculate the self-force for a particle with scalar charge that undergoes
radial infall in a Schwarzschild spacetime after being held at rest until a
time t = 0. Our result is valid in the case of short duration from the start.
It is possible to use the Hadamard-WKB expansion in this case because the value
of the integral of the retarded Green's function over the particle's entire
past trajectory can be expressed in terms of two integrals over the time period
that the particle has been falling. This analytic result is expected to be
useful as a check for numerical prescriptions including those involving mode
sum regularization and for any other analytical approximations to self-force
calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the
corrections given in the erratu
Gravitational Self Force in a Schwarzschild Background and the Effective One Body Formalism
We discuss various ways in which the computation of conservative
Gravitational Self Force (GSF) effects on a point mass moving in a
Schwarzschild background can inform us about the basic building blocks of the
Effective One-Body (EOB) Hamiltonian. We display the information which can be
extracted from the recently published GSF calculation of the first-GSF-order
shift of the orbital frequency of the last stable circular orbit, and we
combine this information with the one recently obtained by comparing the EOB
formalism to high-accuracy numerical relativity (NR) data on coalescing binary
black holes. The information coming from GSF data helps to break the degeneracy
(among some EOB parameters) which was left after using comparable-mass NR data
to constrain the EOB formalism. We suggest various ways of obtaining more
information from GSF computations: either by studying eccentric orbits, or by
focussing on a special zero-binding zoom-whirl orbit. We show that logarithmic
terms start entering the post-Newtonian expansions of various (EOB and GSF)
functions at the fourth post-Newtonian (4PN) level, and we analytically compute
the first logarithm entering a certain, gauge-invariant "redshift" GSF function
(defined along the sequence of circular orbits).Comment: 44 page
Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities
The phenomenology of quantum systems in curved space-times is among the most
fascinating fields of physics, allowing --often at the gedankenexperiment
level-- constraints on tentative theories of quantum gravity. Determining the
dynamics of fields in curved backgrounds remains however a complicated task
because of the highly intricate partial differential equations involved,
especially when the space metric exhibits no symmetry. In this article, we
provide --in a pedagogical way-- a general formalism to determine this dynamics
at the semiclassical order. To this purpose, a generic expression for the
semiclassical propagator is computed and the equation of motion for the
probability four-current is derived. Those results underline a direct analogy
between the computation of the propagator in general relativistic quantum
mechanics and the computation of the propagator for stationary systems in
non-relativistic quantum mechanics. A possible application of this formalism to
curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has
been adde
- …