173 research outputs found

    Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions

    Full text link
    We demonstrate spin torque induced auto-oscillation in MgO-based magnetic tunnel junctions. At the generation threshold, we observe a strong line narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power, yielding spectrally pure oscillations free of flicker noise. Setting the synthetic antiferromagnet into autooscillation requires the same current polarity as the one needed to switch the free layer magnetization. The induced auto-oscillations are observed even at zero applied field, which is believed to be the acoustic mode of the synthetic antiferromagnet. While the phase coherence of the auto-oscillation is of the order of microseconds, the power autocorrelation time is of the order of milliseconds and can be strongly influenced by the free layer dynamics

    Auto-oscillation threshold and line narrowing in MgO-based spin-torque oscillators

    Full text link
    We present an experimental study of the power spectrum of current-driven magnetization oscillations in MgO tunnel junctions under low bias. We find the existence of narrow spectral lines, down to 8 MHz in width at a frequency of 10.7 GHz, for small applied fields with clear evidence of an auto-oscillation threshold. Micromagnetics simulations indicate that the excited mode corresponds to an edge mode of the synthetic antiferromagnet

    Quantized spin wave modes in magnetic tunnel junction nanopillars

    Full text link
    We present an experimental and theoretical study of the magnetic field dependence of the mode frequency of thermally excited spin waves in rectangular shaped nanopillars of lateral sizes 60x100, 75x150, and 105x190 nm2, patterned from MgO-based magnetic tunnel junctions. The spin wave frequencies were measured using spectrally resolved electrical noise measurements. In all spectra, several independent quantized spin wave modes have been observed and could be identified as eigenexcitations of the free layer and of the synthetic antiferromagnet of the junction. Using a theoretical approach based on the diagonalization of the dynamical matrix of a system of three coupled, spatially confined magnetic layers, we have modeled the spectra for the smallest pillar and have extracted its material parameters. The magnetization and exchange stiffness constant of the CoFeB free layer are thereby found to be substantially reduced compared to the corresponding thin film values. Moreover, we could infer that the pinning of the magnetization at the lateral boundaries must be weak. Finally, the interlayer dipolar coupling between the free layer and the synthetic antiferromagnet causes mode anticrossings with gap openings up to 2 GHz. At low fields and in the larger pillars, there is clear evidence for strong non-uniformities of the layer magnetizations. In particular, at zero field the lowest mode is not the fundamental mode, but a mode most likely localized near the layer edges.Comment: 16 pages, 4 figures, (re)submitted to PR

    Agility of vortex-based nanocontact spin torque oscillators

    Full text link
    We study the agility of current-tunable oscillators based on a magnetic vortex orbiting around a point contact in spin-valves. Theory predicts frequency-tuning by currents occurs at constant orbital radius, so an exceptional agility is anticipated. To test this, we have inserted an oscillator in a microwave interferometer to apply abrupt current variations while time resolving its emission. Using frequency shift keying, we show that the oscillator can switch between two stabilized frequencies differing by 25% in less than ten periods. With a wide frequency tunability and a good agility, such oscillators possess desirable figures of merit for modulation-based rf applications.Comment: 3 pages, 3 figure

    Frequency shift keying in vortex-based spin torque oscillators

    Full text link
    Vortex-based spin-torque oscillators can be made from extended spin valves connected to an electrical nanocontact. We study the implementation of frequency shift keying modulation in these oscillators. Upon a square modulation of the current in the 10 MHz range, the vortex frequency follows the current command, with easy identification of the two swapping frequencies in the spectral measurements. The frequency distribution of the output power can be accounted for by convolution transformations of the dc current vortex waveform, and the current modulation. Modeling indicates that the frequency transitions are phase coherent and last less than 25 ns. Complementing the multi-octave tunability and first-class agility, the capability of frequency shift keying modulation is an additional milestone for the implementation of vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure

    Current-driven vortex oscillations in metallic nanocontacts

    Get PDF
    We present experimental evidence of sub-GHz spin-transfer oscillations in metallic nano-contacts that are due to the translational motion of a magnetic vortex. The vortex is shown to execute large-amplitude orbital motion outside the contact region. Good agreement with analytical theory and micromagnetics simulations is found.Comment: 4 pages, 3 figure

    Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio

    Full text link
    We study in-plane magnetic tunnel junctions with additional perpendicular polarizer for subnanosecond-current-induced switching memories. The spin-transfer-torque switching dynamics was studied as a function of the cell aspect ratio both experimentally and by numerical simulations using the macrospin model. We show that the anisotropy field plays a significant role in the dynamics, along with the relative amplitude of the two spin-torque contributions. This was confirmed by micromagnetic simulations. Real-time measurements of the reversal were performed with samples of low and high aspect ratio. For low aspect ratios, a precessional motion of the magnetization was observed and the effect of temperature on the precession coherence was studied. For high aspect ratios, we observed magnetization reversals in less than 1 ns for high enough current densities, the final state being controlled by the current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure

    Current-driven vortex oscillations in metallic nanocontacts: Zero-field oscillations and training effects

    Full text link
    We present an experimental and theoretical study of the low-field dynamics of current-driven vortex oscillations in nanocontacts based on spin-valve multilayers. These oscillations appear as low-frequency (250-500 MHz) excitations in the electrical power spectrum which arise from to variations in the giant-magnetoresistance. We show that the vortex oscillations, once nucleated at large fields applied perpendicular to the film plane, persist at zero applied magnetic fields. Some training effects on the oscillation frequency and linewidth also observed for small in-plane magnetic fields.Comment: 6 pages, 7 figure

    Understanding nanoscale temperature gradients in magnetic nanocontacts

    Full text link
    We determine the temperature profile in magnetic nanocontacts submitted to the very large current densities that are commonly used for spin-torque oscillator behavior. Experimentally, the quadratic current-induced increase of the resistance through Joule heating is independent of the applied temperature from 6 K to 300 K. The modeling of the experimental rate of the current-induced nucleation of a vortex under the nanocontact, assuming a thermally-activated process, is consistent with a local temperature increase between 150 K and 220 K. Simulations of heat generation and diffusion for the actual tridimensional geometry were conducted. They indicate a temperature-independent efficiency of the heat sinking from the electrodes, combined with a localized heating source arising from a nanocontact resistance that is also essentially temperature-independent. For practical currents, we conclude that the local increase of temperature is typically 160 K and it extends 450 nm about the nanocontact. Our findings imply that taking into account the current-induced heating at the nanoscale is essential for the understanding of magnetization dynamics in nanocontact systems.Comment: 5 pages, 5 figure
    • …
    corecore