313 research outputs found

    Replacement Gastrostomy Tube Causing Acute Pancreatitis: Case Series with Review of Literature

    Get PDF
    Context Percutaneous endoscopic gastrostomy (PEG) feedings are generally considered safe with few serious complications. Acute pancreatitis is a rare complication associated with replacement percutaneous endoscopic gastrostomy tubes. Case report We report two cases of acute pancreatitis induced by migrated replacement percutaneous endoscopic gastrostomy tubes. Conclusions Migration of a balloon into the duodenum can result in external manipulation of the ampulla of Vater thereby disturbing the flow of pancreatic secretions leading to acute pancreatitis. Recognition of this complication is important and should be included as potential etiology of acute pancreatitis in patients receiving percutaneous endoscopic gastrostomy feedings. Periodic examination and documentation of the distance of the balloon from the skin should be performed to document the position of the tubes or any inadvertent migration of the tubes. The use of Foley catheters as permanent replacement tubes should be considered medically inappropriate

    The SMC SNR 1E0102.2-7219 as a Calibration Standard for X-ray Astronomy in the 0.3-2.5 keV Bandpass

    Get PDF
    The flight calibration of the spectral response of CCD instruments below 1.5 keV is difficult in general because of the lack of strong lines in the on-board calibration sources typically available. We have been using 1E 0102.2-7219, the brightest supernova remnant in the Small Magellanic Cloud, to evaluate the response models of the ACIS CCDs on the Chandra X-ray Observatory (CXO), the EPIC CCDs on the XMM-Newton Observatory, the XIS CCDs on the Suzaku Observatory, and the XRT CCD on the Swift Observatory. E0102 has strong lines of O, Ne, and Mg below 1.5 keV and little or no Fe emission to complicate the spectrum. The spectrum of E0102 has been well characterized using high-resolution grating instruments, namely the XMM-Newton RGS and the CXO HETG, through which a consistent spectral model has been developed that can then be used to fit the lower-resolution CCD spectra. We have also used the measured intensities of the lines to investigate the consistency of the effective area models for the various instruments around the bright O (~570 eV and 654 eV) and Ne (~910 eV and 1022 eV) lines. We find that the measured fluxes of the O VII triplet, the O VIII Ly-alpha line, the Ne IX triplet, and the Ne X Ly-alpha line generally agree to within +/-10 % for all instruments, with 28 of our 32 fitted normalizations within +/-10% of the RGS-determined value. The maximum discrepancies, computed as the percentage difference between the lowest and highest normalization for any instrument pair, are 23% for the O VII triplet, 24% for the O VIII Ly-alpha line, 13% for the Ne IX triplet, and 19% for the Ne X Ly-alpha line. If only the CXO and XMM are compared, the maximum discrepancies are 22% for the O VII triplet, 16% for the O VIII Ly-alpha line, 4% for the Ne IX triplet, and 12% for the Ne X Ly-alpha line.Comment: 16 pages, 11 figures, to be published in Proceedings of the SPIE 7011: Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray 200

    Outer jet X-ray and radio emission in R Aquarii: 1999.8 to 2004.0

    Full text link
    Chandra and VLA observations of the symbiotic star R Aqr in 2004 reveal significant changes over the three to four year interval between these observations and previous observations taken with the VLA in 1999 and with Chandra in 2000. This paper reports on the evolution of the outer thermal X-ray lobe-jets and radio jets. The emission from the outer X-ray lobe-jets lies farther away from the central binary than the outer radio jets, and comes from material interpreted as being shock heated to ~10^6 K, a likely result of collision between high speed material ejected from the central binary and regions of enhanced gas density. Between 2000 and 2004, the Northeast (NE) outer X-ray lobe-jet moved out away from the central binary, with an apparent projected motion of ~580 km s^-1. The Southwest (SW) outer X-ray lobe-jet almost disappeared between 2000 and 2004, presumably due to adiabatic expansion and cooling. The NE radio bright spot also moved away from the central binary between 2000 and 2004, but with a smaller apparent velocity than of the NE X-ray bright spot. The SW outer lobe-jet was not detected in the radio in either 1999 or 2004. The density and mass of the X-ray emitting material is estimated. Cooling times, shock speeds, pressure and confinement are discussed.Comment: 23 pages, 8 figure

    A GAL4 Driver Resource for Developmental and Behavioral Studies on the Larval CNS of Drosophila

    Get PDF
    SummaryWe report the larval CNS expression patterns for 6,650 GAL4 lines based on cis-regulatory regions (CRMs) from the Drosophila genome. Adult CNS expression patterns were previously reported for this collection, thereby providing a unique resource for determining the origins of adult cells. An illustrative example reveals the origin of the astrocyte-like glia of the ventral CNS. Besides larval neurons and glia, the larval CNS contains scattered lineages of immature, adult-specific neurons. Comparison of lineage expression within this large collection of CRMs provides insight into the codes used for designating neuronal types. The CRMs encode both dense and sparse patterns of lineage expression. There is little correlation between brain and thoracic lineages in patterns of sparse expression, but expression in the two regions is highly correlated in the dense mode. The optic lobes, by comparison, appear to use a different set of genetic instructions in their development

    Predicting Chandra CCD Degradation with the Chandra Radiation Model

    Get PDF
    Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This presentation describes CRM, its role in Chandra operations, and its prediction of the ACIS CTI increase

    Metabolic Evaluation of Preserved and Reinserted Canine Kidneys

    Get PDF
    Twenty-four hour preservation of kidneys has been achieved without perfusion, and in some instances without oxygen in a hypothermic hyperbaric environment (Groenewald et al., 1969). These experiments were designed to evaluate the survival of the preserved kidneys and the success of the preservation techniques
    corecore