55 research outputs found

    Basic Studies of III-IV High Efficiency Cell Components

    Get PDF
    The objective of the project is to raise the understanding of dark current mechanisms in GaAs-related solar cells to a level comparable to that of silicon cells. Motivation for this work arises from the observation that much of the progress in crystalline silicon cell performance has occurred as a result of a very deep knowledge of the physics controlling the cell’s dark current. Based on this knowledge, new cell structures evolved to suppress dominant dark current mechanisms. A comparable level of knowledge of GaAs cell device physics does not yet exist, but will be essential if cell performance near the thermodynamic limit is to be achieved

    An efficient semiparametric maxima estimator of the extremal index

    Get PDF
    The extremal index θ\theta, a measure of the degree of local dependence in the extremes of a stationary process, plays an important role in extreme value analyses. We estimate θ\theta semiparametrically, using the relationship between the distribution of block maxima and the marginal distribution of a process to define a semiparametric model. We show that these semiparametric estimators are simpler and substantially more efficient than their parametric counterparts. We seek to improve efficiency further using maxima over sliding blocks. A simulation study shows that the semiparametric estimators are competitive with the leading estimators. An application to sea-surge heights combines inferences about θ\theta with a standard extreme value analysis of block maxima to estimate marginal quantiles.Comment: 17 pages, 7 figures. Minor edits made to version 1 prior to journal publication. The final publication is available at Springer via http://dx.doi.org/10.1007/s10687-015-0221-

    Assessment of Risks Induced by Countermining Unexploded Large-Charge Historical Ordnance in a Shallow Water Environment—Part I: Real Case Study

    No full text
    International audienceThe goal of the work presented in a two-companion paper is to pave the way for reliably assessing the risks of damage to buildings on the shore, induced by the detonation of unexploded historical ordnance (UXO) of large weights in variable shallow water environments with a water depth less than 50 m. The risk assessment is quantified through the seismic magnitude on the Richter scale, induced by the detonation of charges of different weights (between 80- and 680-kg TNT-equivalent). This metric is investigated experimentally using a coupled seismo-acoustic approach within the framework of a UXO clearance (countermining) campaign in the Mediterranean Sea. Analysis of real acoustic and seismic data shows that, compared to a charge detonation in water, a similar detonation on the seabed generates seismic signals of lower frequencies and higher amplitudes that propagate in the seabed. The larger the charge weight, the higher the seismic amplitude. Besides the explosion-coast distance, the ground properties also affect the signals. The sediments favor a longer signal duration and the presence of late dispersive and very low-frequency signals with a large amplitude, whereas the rocky grounds better preserve the high-frequency energy propagation. For the local environment considered in this study, a charge detonation on the seafloor generates seismic events of higher magnitudes compared to a detonation in water. However, these magnitudes are likely low enough to prevent any large damage in the nearby inland infrastructures

    Inflammation-induced cholestasis in cancer cachexia.

    No full text
    BACKGROUND: Cancer cachexia is a debilitating metabolic syndrome contributing to cancer death. Organs other than the muscle may contribute to the pathogenesis of cancer cachexia. This work explores new mechanisms underlying hepatic alterations in cancer cachexia. METHODS: We used transcriptomics to reveal the hepatic gene expression profile in the colon carcinoma 26 cachectic mouse model. We performed bile acid, tissue mRNA, histological, biochemical, and western blot analyses. Two interventional studies were performed using a neutralizing interleukin 6 antibody and a bile acid sequestrant, cholestyramine. Our findings were evaluated in a cohort of 94 colorectal cancer patients with or without cachexia (43/51). RESULTS: In colon carcinoma 26 cachectic mice, we discovered alterations in five inflammatory pathways as well as in other pathways, including bile acid metabolism, fatty acid metabolism, and xenobiotic metabolism (normalized enrichment scores of -1.97, -2.16, and -1.34, respectively; all Padj < 0.05). The hepatobiliary transport system was deeply impaired in cachectic mice, leading to increased systemic and hepatic bile acid levels (+1512 ± 511.6 pmol/mg, P = 0.01) and increased hepatic inflammatory cytokines and neutrophil recruitment to the liver of cachectic mice (+43.36 ± 16.01 neutrophils per square millimetre, P = 0.001). Adaptive mechanisms were set up to counteract this bile acid accumulation by repressing bile acid synthesis and by enhancing alternative routes of basolateral bile acid efflux. Targeting bile acids using cholestyramine reduced hepatic inflammation, without affecting the hepatobiliary transporters (e.g. tumour necrosis factor α signalling via NFκB and inflammatory response pathways, normalized enrichment scores of -1.44 and -1.36, all Padj < 0.05). Reducing interleukin 6 levels counteracted the change in expression of genes involved in the hepatobiliary transport, bile acid synthesis, and inflammation. Serum bile acid levels were increased in cachectic vs. non-cachectic cancer patients (e.g. total bile acids, +5.409 ± 1.834 μM, P = 0.026) and were strongly correlated to systemic inflammation (taurochenodeoxycholic acid and C-reactive protein: ρ = 0.36, Padj = 0.017). CONCLUSIONS: We show alterations in bile acid metabolism and hepatobiliary secretion in cancer cachexia. In this context, we demonstrate the contribution of systemic inflammation to the impairment of the hepatobiliary transport system and the role played by bile acids in the hepatic inflammation. This work paves the way to a better understanding of the role of the liver in cancer cachexia
    corecore