3,517 research outputs found

    Propagating EUV disturbances in the solar corona : two-wavelength observations

    Get PDF
    Quasi-periodic EUV disturbances simultaneously observed in 171 Ã… and 195 Ã… TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics

    Investigation into Reynolds Number Effects on a Biomimetic Flapping Wing

    Get PDF
    This research investigated the behavior of a Manduca sexta inspired biomimetic wing as a function of Reynolds number by measuring the aerodynamic forces produced by varying the characteristic wing length and testing at air densities from atmospheric to near vacuum. A six degree of freedom balance was used to measure forces and moments, while high speed cameras were used to measure wing stroke angle. An in-house created graphical user interface was used to vary the voltage of the drive signal sent to the piezoelectric actuator which determined the wing stroke angle. The Air Force Institute of Technology baseline 50 mm wing was compared to wings manufactured with 55, 60, 65, and 70 mm spans, while maintaining a constant aspect ratio. Tests were conducted in a vacuum chamber at air densities between 0.5% and 100% of atmospheric pressure. Increasing the wingspan increased the wing’s weight, which reduced the first natural frequency; and did not result in an increase in vertical force over the baseline 50 mm wing. However, if the decrease in natural frequency corresponding to the increased wing span was counteracted by increasing the thickness of the joint material in the linkage mechanism, vertical force production increased over the baseline wing planform. Of the wings built with the more robust flapping mechanism, the 55 mm wing span produced 95% more vertical force at a 26% higher flapping frequency, while the 70 mm wing span produced 165% more vertical force at a 10% lower frequency than the Air Force Institute of Technology baseline wing. Negligible forces and moments were measured at vacuum, where the wing exhibited predominantly inertial motion, revealing flight forces measured in atmosphere are almost wholly limited to interaction with the surrounding air. Lastly, there was a rough correlation between Reynolds number and vertical force, indicating Reynolds number is a useful modelling parameter to predict lift and corresponding aerodynamic coefficients for a specific wing design

    Relaxation of classical many-body hamiltonians in one dimension

    Full text link
    The relaxation of Fourier modes of hamiltonian chains close to equilibrium is studied in the framework of a simple mode-coupling theory. Explicit estimates of the dependence of relevant time scales on the energy density (or temperature) and on the wavenumber of the initial excitation are given. They are in agreement with previous numerical findings on the approach to equilibrium and turn out to be also useful in the qualitative interpretation of them. The theory is compared with molecular dynamics results in the case of the quartic Fermi-Pasta-Ulam potential.Comment: 9 pag. 6 figs. To appear in Phys.Rev.

    High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Full text link
    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mgii 2796.35 {\AA}, Cii 1335.71 {\AA}, and Si iv 1393.76 {\AA} lines in the sunspot. The intensity change is about 30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of about 10 km/s in Si iv. In the umbra the Si iv oscillation lags those of Cii and Mgii by about 3 and 12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si iv, whereas the intensity enhancement slightly precedes the maximum blueshift in Mgii. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.Comment: 5 figures, in ApJ. Correction of time lags (correct values are 3 and 12s) made on June 17 201

    Analysis of travelling waves associated with the modelling of aerosolised skin grafts

    Get PDF
    A previous model developed by the authors investigates the growth patterns of keratinocyte cell colonies after they have been applied to a burn site using a spray technique. In this paper, we investigate a simplified one-dimensional version of the model. This model yields travelling wave solutions and we analyse the behaviour of the travelling waves. Approximations for the rate of healing and maximum values for both the active healing and the healed cell densities are obtained

    The approach to thermalization in the classical phi^4 theory in 1+1 dimensions: energy cascades and universal scaling

    Full text link
    We study the dynamics of thermalization and the approach to equilibrium in the classical phi^4 theory in 1+1 spacetime dimensions. At thermal equilibrium we exploit the equivalence between the classical canonical averages and transfer matrix quantum traces of the anharmonic oscillator to obtain exact results for the temperature dependence of several observables, which provide a set of criteria for thermalization. We find that the Hartree approximation is remarkably accurate in equilibrium. The non-equilibrium dynamics is studied by numerically solving the equations of motion in light-cone coordinates for a broad range of initial conditions and energy densities.The time evolution is described by several stages with a cascade of energy towards the ultraviolet. After a transient stage, the spatio-temporal gradient terms become larger than the nonlinear term and a stage of universal cascade emerges.This cascade starts at a time scale t_0 independent of the initial conditions (except for very low energy density). Here the power spectra feature universal scaling behavior and the front of the cascade k(t) grows as a power law k(t) sim t^alpha with alpha lesssim 0.25. The wake behind the cascade is described as a state of Local Thermodynamic Equilibrium (LTE) with all correlations being determined by the equilibrium functional form with an effective time dependent temperatureTeff(t) which slowly decreases as sim t^{-alpha}.Two well separated time scales emerge while Teff(t) varies slowly, the wavectors in the wake with k < k(t) attain LTE on much shorter time scales.This universal scaling stage ends when the front of the cascade reaches the cutoff at a time t_1 sim a^{-1/alpha}. Virialization starts to set much earlier than LTE. We find that strict thermalization is achieved only for an infinite time scale.Comment: relevance for quantum field theory discussed providing validity criteria. To appear in Phys. Rev.

    Prevalence of Small-scale Jets from the Networks of the Solar Transition Region and Chromosphere

    Full text link
    As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80-250 km/s from the narrow bright network lanes of this interface region. These jets have lifetimes of 20-80 seconds and widths of 300 km or less. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with ~20 km/s amplitudes. Many jets reach temperatures of at least ~100000 K and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.Comment: Figs 1-4 & S1-S5; Movies S1-S8; published in Science, including the main text and supplementary materials. Reference: H. Tian, E. E. DeLuca, S. R. Cranmer, et al., Science 346, 1255711 (2014
    • …
    corecore