46 research outputs found

    Africa’s response to the COVID-19 pandemic : A review of the nature of the virus, impacts and implications for preparedness

    Get PDF
    Background: COVID-19 continues to wreak havoc in different countries across the world, claiming thousands of lives, increasing morbidity and disrupting lifestyles. The global scientific community is in urgent need of relevant evidence, to understand the challenges and knowledge gaps, as well as the opportunities to contain the spread of the virus. Considering the unique socio-economic, demographic, political, ecological and climatic contexts in Africa, the responses which may prove to be successful in other regions may not be appropriate on the continent. This paper aims to provide insight for scientists, policy makers and international agencies to contain the virus and to mitigate its impact at all levels. Methods: The Affiliates of the African Academy of Sciences (AAS), came together to synthesize the current evidence, identify the challenges and opportunities to enhance the understanding of the disease. We assess the potential impact of this pandemic and the unique challenges of the disease on African nations. We examine the state of Africa’s preparedness and make recommendations for steps needed to win the war against this pandemic and combat potential resurgence. Results: We identified gaps and opportunities among cross-cutting issueswhich must be addressed or harnessed in this pandemic. Factors such as the nature of the virus and the opportunities for drug targeting, point of care diagnostics, health surveillance systems, food security, mental health, xenophobia and gender-based violence, shelter for the homeless, water and sanitation, telecommunications challenges, domestic regional coordination and financing. Conclusion: Based on our synthesis of the current evidence, while there are plans for preparedness in several African countries, there are significant limitations. A multi-sectoral efforts from the science, education, medical, technology, communication, business, and industry sectors, as well as local communities, must work collaboratively to assist countries in order to win this fight

    Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

    Get PDF
    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established

    Diagnostic work-up and management of patients with isolated methylmalonic acidurias in European metabolic centres

    Full text link
    The long-term outcome of patients with methylmalonic aciduria (MMA) is still uncertain due to a high frequency of complications such as chronic renal failure and metabolic stroke. The understanding of this disease is hampered by a huge variation in the management of these patients. The major aim of this study was to evaluate the current practice in different European metabolic centres. A standardized questionnaire was sent to 20 metabolic centres asking for standard procedures for confirmation of diagnosis, testing cobalamin responsiveness, dietary treatment, pharmacotherapy, and biochemical and clinical monitoring. Sixteen of 20 metabolic centres (80%) returned questionnaires on 183 patients: 89 of the patients were classified as mut(0), 36 as mut(-), 13 as cblA, 7 as cblB, and 38 as cblA/B. (1) Confirmation of diagnosis: All centres investigate enzyme activity by propionate fixation in fibroblasts; six centres also perform mutation analysis. (2) Cobalamin response: Ten centres follow standardized protocols showing large variations. A reliable exclusion of nonspecific effects has not yet been achieved by these protocols. (3) Long-term treatment: In cobalamin-responsive patients, most centres use hydroxocobalamin (1-14 mg/week i.m. or 5-20 mg/week orally), while two centres use cyanocobalamin. All cobalamin-nonresponsive patients and most cobalamin-responsive patients are supplemented with L: -carnitine (50-100 mg/kg per day). Fourteen centres use intestinal decontamination by antibiotic therapy. Most centres follow D-A-CH (n = 6) or Dewey (n = 4) recommendations for protein requirements. Fourteen centres regularly use precursor-free amino acid supplements. Standardized monitoring protocols are available in seven centres, again showing high variability
    corecore