421 research outputs found

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Application of unsupervised chemometric analysis and self-organising feature map (SOFM) for the classification of lighter fuels

    Get PDF
    A variety of lighter fuel samples from different manufacturers (both unevaporated and evaporated) were analysed using conventional gas chromatography-mass spectrometry (GC-MS) analysis. In total 51 characteristic peaks were selected as variables and subjected to data pre-processing prior to subsequent analysis using unsupervised chemometric analysis (PCA and HCA) and a SOFM artificial neural network. The results obtained revealed that SOFM acted as a powerful means of evaluating and linking degraded ignitable liquid sample data to their parent unevaporated liquids

    Potential of a cyclone prototype spacer to improve in vitro dry powder delivery

    Get PDF
    Copyright The Author(s) 2013. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPurpose: Low inspiratory force in patients with lung disease is associated with poor deagglomeration and high throat deposition when using dry powder inhalers (DPIs). The potential of two reverse flow cyclone prototypes as spacers for commercial carrierbased DPIs was investigated. Methods: Cyclohaler®, Accuhaler® and Easyhaler® were tested with and without the spacers between 30-60 Lmin-1. Deposition of particles in the next generation impactor and within the devices was determined by high performance liquid chromatography. Results: Reduced induction port deposition of the emitted particles from the cyclones was observed due to the high retention of the drug within the spacers (e.g. salbutamol sulphate (SS): 67.89 ± 6.51 % at 30 Lmin-1 in Cheng 1). Fine particle fractions of aerosol as emitted from the cyclones were substantially higher than the DPIs alone. Moreover, the aerodynamic diameters of particles emitted from the cyclones were halved compared to the DPIs alone (e.g. SS from the Cyclohaler® at 4 kPa: 1.08 ± 0.05 μm vs. 3.00 ± 0.12 μm, with and without Cheng 2, respectively) and unaltered with increased flow rates. Conclusion: This work has shown the potential of employing a cyclone spacer for commercial carrier-based DPIs to improve inhaled drug delivery.Peer reviewe

    The American Science Pipeline: Sustaining Innovation in a Time of Economic Crisis

    Get PDF
    Significant limitations have emerged in America's science training pipeline, including inaccessibility, inflexibility, financial limitations, and lack of diversity. We present three effective programs that collectively address these challenges. The programs are grounded in rigorous science and integrate through diverse disciplines across undergraduate, graduate, and postdoctoral students, and resonate with the broader community. We discuss these models in the context of current economic constraints on higher education and the urgent need for our institutions to recruit and retain diverse student populations and sustain the successful American record in scientific education and innovation

    Study of montelukast in children with sickle cell disease (SMILES): a study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Young children with sickle cell anaemia (SCA) often have slowed processing speed associated with reduced brain white matter integrity, low oxygen saturation, and sleep-disordered breathing (SDB), related in part to enlarged adenoids and tonsils. Common treatments for SDB include adenotonsillectomy and nocturnal continuous positive airway pressure (CPAP), but adenotonsillectomy is an invasive surgical procedure, and CPAP is rarely well-tolerated. Further, there is no current consensus on the ability of these treatments to improve cognitive function. Several double-blind, randomised controlled trials (RCTs) have demonstrated the efficacy of montelukast, a safe, well-tolerated anti-inflammatory agent, as a treatment for airway obstruction and reducing adenoid size for children who do not have SCA. However, we do not yet know whether montelukast reduces adenoid size and improves cognition function in young children with SCA. METHODS: The Study of Montelukast In Children with Sickle Cell Disease (SMILES) is a 12-week multicentre, double-blind, RCT. SMILES aims to recruit 200 paediatric patients with SCA and SDB aged 3-7.99 years to assess the extent to which montelukast can improve cognitive function (i.e. processing speed) and sleep and reduce adenoidal size and white matter damage compared to placebo. Patients will be randomised to either montelukast or placebo for 12 weeks. The primary objective of the SMILES trial is to assess the effect of montelukast on processing speed in young children with SCA. At baseline and post-treatment, we will administer a cognitive evaluation; caregivers will complete questionnaires (e.g. sleep, pain) and measures of demographics. Laboratory values will be obtained from medical records collected as part of standard care. If a family agrees, patients will undergo brain MRIs for adenoid size and other structural and haemodynamic quantitative measures at baseline and post-treatment, and we will obtain overnight oximetry. DISCUSSION: Findings from this study will increase our understanding of whether montelukast is an effective treatment for young children with SCA. Using cognitive testing and MRI, the SMILES trial hopes to gain critical knowledge to help develop targeted interventions to improve the outcomes of young children with SCA. TRIAL REGISTRATION: ClinicalTrials.gov NCT04351698 . Registered on April 17, 2020. European Clinical Trials Database (EudraCT No. 2017-004539-36). Registered on May 19, 2020

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Learner-Centered Inquiry in Undergraduate Biology: Positive Relationships with Long-Term Student Achievement

    Get PDF
    We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation

    Temporal clustering of Kawasaki disease cases around the world

    Get PDF
    In a single-site study (San Diego, CA, USA), we previously showed that Kawasaki Disease (KD) cases cluster temporally in bursts of approximately 7 days. These clusters occurred more often than would be expected at random even after accounting for long-term trends and seasonality. This finding raised the question of whether other locations around the world experience similar temporal clusters of KD that might offer clues to disease etiology. Here we combine data from San Diego and nine additional sites around the world with hospitals that care for large numbers of KD patients, as well as two multi-hospital catchment regions. We found that across these sites, KD cases clustered at short time scales and there were anomalously long quiet periods with no cases. Both of these phenomena occurred more often than would be expected given local trends and seasonality. Additionally, we found unusually frequent temporal overlaps of KD clusters and quiet periods between pairs of sites. These findings suggest that regional and planetary range environmental influences create periods of higher or lower exposure to KD triggers that may offer clues to the etiology of KD
    • …
    corecore