60 research outputs found

    Gauge Field Fluctuations and First-Order Phase Transition in Color Superconductivity

    Full text link
    We study the gauge field fluctuations in dense quark matter and determine the temperature of the induced first-order phase transition to the color-superconducting phase in weak coupling. We find that the local approximation of the coupling between the gauge potential and the order parameter, employed in the Ginzburg-Landau theory, has to be modified by restoring the full momentum dependence of the polarization function of gluons in the superconducting phase.Comment: 5 pages, 1 figure, Revtex, we have modified our conclusions for the metallic superconducto

    Ward Identities in Non-equilibrium QED

    Full text link
    We verify the QED Ward identity for the two- and three -point functions at non-equilibrium in the HTL limit. We use the Keldysh formalism of real time finite temperature field theory. We obtain an identity of the same form as the Ward identity for a set of one loop self-energy and one loop three-point vertex diagrams which are constructed from HTL effective propagators and vertices.Comment: 19 pages, RevTex, 4 PostScript figures, revised version to be published in Phys. Rev.

    Absence of the London limit for the first-order phase transition to a color superconductor

    Full text link
    We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.Comment: 14 pages, 5 figure

    Shear viscosity in Ď•4\phi^4 theory from an extended ladder resummation

    Full text link
    We study shear viscosity in weakly coupled hot Ď•4\phi^4 theory using the CTP formalism . We show that the viscosity can be obtained as the integral of a three-point function. Non-perturbative corrections to the bare one-loop result can be obtained by solving a decoupled Schwinger-Dyson type integral equation for this vertex. This integral equation represents the resummation of an infinite series of ladder diagrams which contribute to the leading order result. It can be shown that this integral equation has exactly the same form as the Boltzmann equation. We show that the integral equation for the viscosity can be reexpressed by writing the vertex as a combination of polarization tensors. An expression for this polarization tensor can be obtained by solving another Schwinger-Dyson type integral equation. This procedure results in an expression for the viscosity that represents a non-perturbative resummation of contributions to the viscosity which includes certain non-ladder graphs, as well as the usual ladders. We discuss the motivation for this resummation. We show that these resummations can also be obtained by writing the viscosity as an integral equation involving a single four-point function. Finally, we show that when the viscosity is expressed in terms of a four-point function, it is possible to further extend the set of graphs included in the resummation by treating vertex and propagator corrections self-consistently. We discuss the significance of such a self-consistent resummation and show that the integral equation contains cancellations between vertex and propagator corrections.Comment: Revtex 40 pages with 29 figures, version to appear in Phys. Rev.

    KMS conditions for 4-point Green functions at finite temperature

    Get PDF
    We study the 4-point function in the Keldysh formalism of the closed time path formulation of real time finite temperature field theory. We derive the KMS conditions for these functions and discuss the number of 4-point functions that are independent. We define a set of `physical' functions which are linear combinations of the usual Keldysh functions. We show that these functions satisfy simple KMS conditions. In addition, we consider a set of integral equations which represent a resummation of ladder graphs. We show that these integral equations decouple when one uses the physical functions that we have defined. We discuss the generalization of these results to QED.Comment: 17 pages in Revtex with 2 figure

    A Hybrid Simulated Annealing Algorithm for Container Loading Problem

    Get PDF
    This paper presents a hybrid simulated annealing algorithm for container loading problem with boxes of different sizes and single container for loading. A basic heuristic algorithm is introduced to generate feasible solution from a special structure called packing sequence. The hybrid algorithm uses basic heuristic to encode feasible packing solution as packing sequence, and searches in the encoding space to find an approximated optimal solution. The computational experiments on 700 weakly heterogeneous benchmark show that our algorithm outperforms all previous methods in average

    The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation

    Full text link
    Within the framework of the semiclassical approximation, we derive the Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD plasma. The probability of the plasmon-plasmon scattering at the leading order in the coupling constant is obtained. This probability is gauge-independent at least in the class of the covariant and temporal gauges. It is noted that the structure of the scattering kernel possesses important qualitative difference from the corresponding one in the Abelian plasma, in spite of the fact that we focused our study on the colorless soft excitations. It is shown that four-plasmon decay is suppressed by the power of gg relative to the process of nonlinear scattering of plasmons by thermal particles at the soft momentum scale. It is stated that the former process becomes important in going to the ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio

    Out of Equilibrium Thermal Field Theories - Finite Time after Switching on the Interaction - Wigner Transforms of Projected Functions

    Get PDF
    We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms (in relative space-time) of two-point functions. For two-point functions we define the concept of projected function: it is zero if any of times refers to the time before switching on the interaction, otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both, resummed and single self-energy insertion approximation) contributions appear which are not the Wigner transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices, there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.Comment: 23 pages + 1 figure, Latex, corrected version, improved presentation, version accepted for publication in Phys. Rev.

    A clique-based algorithm for constructing feasible timetables

    Get PDF
    Constructing a feasible solution, where the focus is on “hard ” constraints only, is an important part of solving timetabling problems. For the University Course Timetabling Problem (UCTP), we propose a heuristic algorithm to schedule events to timeslots based on cliques, each representing a set of events that could be scheduled in the same timeslot, which the algorithm constructs. Our algorithm has been tested on a set of well-known instances, and the experimental results show that our algorithm compares favorably with other effective algorithms

    A framework of auto-adapting distributed object for mobile computing

    No full text
    • …
    corecore