
Title A clique-based algorithm for constructing feasible timetables

Author(s) Liu, Y; Zhang, D; Chin, FYL

Citation Optimization Methods And Software, 2011, v. 26 n. 2, p. 281-294

Issued Date 2011

URL http://hdl.handle.net/10722/129976

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37954187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A clique-based algorithm for constructing feasible timetables
Yongkai Liu, Defu Zhang and Francis Y.L. Chin

Department of Computer Science, Xiamen University, Xiamen 361005, China

Department of Computer Science, University of Hong Kong, Hong Kong

Abstract

Constructing a feasible solution, where the focus is on “hard” constraints only, is an important

part of solving timetabling problems. For the University Course Timetabling Problem (UCTP), we

propose a heuristic algorithm to schedule events to timeslots based on cliques, each representing a

set of events that could be scheduled in the same timeslot, which the algorithm constructs. Our

algorithm has been tested on a set of well-known instances, and the experimental results show that

our algorithm compares favorably with other effective algorithms.

Keywords: timetabling; feasible timetable; heuristic; sequential techniques; clique

1. Introduction

The educational timetabling problem is concerned with the scheduling of a number of events

(courses, lectures, examinations) into limited resources, such as rooms and timeslots, subject to a

set of constraints [1]. Some events have students in common so that they cannot be scheduled into

the same timeslot. This is one instance of a so-called “hard” constraint. Another hard constraint is

that the event must be scheduled into a room which satisfies its requirements (e.g. in terms of the

room capacity or equipment available in the room). A timetable which satisfies all the hard

constraints is called a feasible solution. Once the feasible timetable is constructed, a further step is

to improve the quality of the timetable by considering additional requirements called soft

constraints, such as spreading out the events which involve the same students or teachers so that

students and teachers spread their workload throughout the week. Soft constraints are not

compulsory, but they should be satisfied as much as possible.

Many efficient algorithms, such as traditional Integer Programming [2], [3], [4] Constraint

Logic Programming [5], [6] and meta-heuristic algorithms [7-23], have been designed to solve the

educational timetabling problem. It should be noted that the University Course Timetabling

Problem (UCTP) competition, organized by Metaheuristics Network and sponsored by PATAT in

2002 [7], has greatly promoted the application of meta-heuristic algorithms. The first-place winner

of the UCTP competition was a Simulated Annealing (SA) based algorithm designed by Philipp

Kostuch [9] with a special temperature cooling strategy. The third place winner was also a

SA-based strategy designed by Yuri Bykov [19] who modified the SA-variant called the Great

Deluge (GD) algorithm, which was first employed by E. Burke [18] to solve examination

timetabling problems. To the best of our knowledge, SA was first used by Abramson et al. [8] to

construct timetables in 1991. It has been proved that SA can efficiently solve many kinds of

timetabling problems in [9-13]. Tabu Search (TS) based algorithms proposed by Brigitte Jaumard

et al.[16] and by Luca Di Gaspero [17] ranked second and fourth in the UCTP competition

respectively. While it is true that the TS approach could construct high-quality timetables, more

effort was needed to design the Tabu mechanisms. Although genetic algorithms (GA) did not

perform well in the UCTP competition, they have been shown to be effective for various other

timetabling problems [14], [25]. For instance, Grigorios et al. [14] proposed a special genetic

algorithm, which does not use traditional crossover but only adopts the mutation operator, to solve

the Greek high-school timetabling problems, and experimental results show that GA was more

effective than the column generation approach presented in [15]. In the literature, other algorithms

such as Ant Colony Algorithm [20], [21], Neural Networks [22], and Artificial Immune

Algorithms [23] were also successfully applied to timetabling problems.

Most of the papers consider both hard constraints and soft constraints together. A popular

method [14], [24] is to integrate all the constraints into a single objective function where hard

constraints are associated with a much higher cost coefficient than soft constraints. Another

method [25] is to employ a two-stage approach, in which the first stage deals with constructing a

feasible timetable, and the second stage tries to minimize the violations of soft constraints. In most

cases constructing a feasible solution is considered more important than reducing the violations of

soft constraints, and the infeasible timetables are rarely acceptable in practice. However, as [26]

points out, there are only few papers concentrating solely on constructing feasible solutions. In

this paper, we focus on constructing feasible solutions.

Two events are conflicting if there is an overlap in the students attending them. In general,

conflicting events are not allowed to be scheduled in the same timeslot, and it is often defined as a

hard constraint. If we only consider this constraint, the timetabling problem can be regarded as a

particular case of graph coloring [27] of the conflict graph, in which events are represented by

vertices, conflicts between events are represented by edges, timeslots are represented by the colors,

and allocating timeslots to events can be represented by assigning colors to vertices with no

adjacent vertices having the same color. Thus unsurprisingly, some timetabling algorithms are

based on graph coloring algorithms with additional processing done to take into account the

timetabling problem’s other constraints (e.g. the suitable room constraint). In this paper, we do not

rely on graph coloring but instead introduce a clique-based heuristic. To the best of our knowledge,

there are very few papers which employ clique-based heuristics to solve timetabling problems.

The sequential techniques [28], [29] are graph coloring based constructive methods, in which

the events are first ordered by some metric [30], [31] (such as Largest Degree first, Least

Saturation Degree first or Largest Enrolment first) and then the events are scheduled into the

resource one by one. Often not all events can be scheduled and so further processes are required to

handle the unscheduled events. Carter et al. [32] employed a backtracking technique to reverse

earlier assignments of events in order to release resources for unscheduled events. Kostuch [9]

designed a five-step approach – which included the initial attempt, improvement attempt, shuffling,

blow-ups and opening the last slots – to construct a feasible timetable using less than the specified

number of timeslots.

Instead of scheduling events one by one, our approach tries to schedule all the independent

events at one step by considering cliques of the complement of the conflict graph. These

independent events will then be allocated to different rooms by bipartite matching. Our

clique-based approach is not only simple but also provides a framework for two heuristic steps,

the recombining step and the perturbing step, to efficiently expand the size of the cliques formed

and in so doing reduce the number of unscheduled events.

Recently, Lewis et al [1] created 60 test instances which were “harder” than those used in the

UCTP competition in the sense that feasible solutions were harder to construct. In [1], the authors

reported that some traditional sequential techniques could only schedule about 80% of the events.

Thus far, there are no algorithms that can solve all 60 test instances. Since some timetabling

problems, upon removing the hard constraint of allocating suitable rooms for events, transform

into very hard graph coloring problems, it is not surprising that the sequential techniques may fail

to construct feasible timetables for some instances. We have applied our heuristic on the 60 test

instances and have compared our results with that of the four algorithms proposed in [26] and [1].

Our algorithm, besides giving comparable, if not better, performance in almost all instances

(except only one) takes less running time.

 The rest of this paper is organized as follows. In Section 2, we give the problem definition

and evaluation criteria. In Section 3, we present our algorithm based on cliques. In Section 4, we

analyze the experimental results of our algorithm when tested on the 60 test instances given in [1]

and compare such results with the algorithms given in [26] and [1]. Section 5 concludes.

2. Problem definition and evaluation criteria

The UCTP is defined to schedule a set of events E into a set of timeslots T and a set of

rooms R , subject to a set of constraints H . The problem considered by this paper is a particular

version of UCTP, in which the goal is to construct a feasible timetable where the hard constraints

are as follows:

H1. Every event must be scheduled into a suitable room which meets its requirements.

H2. No student is allowed to attend more than one event in the same timeslot.

H3. No room is allowed to be occupied by more than one event in the same timeslot.

 Every room possesses a set of features, such as room size and availability of certain

equipment. Correspondingly, every event must be allocated to a room that meets its requirements.

So the number of available rooms for each event is fixed for a particular timetabling problem. A

feasible timetable should contain all the events without violating any hard constraints. The number

of timeslots in UCTP is assumed to be 45 (this parameter, which is based on 9 timeslots per day on

a 5-day week, can be readily changed), but when it is hard to schedule all the events into the

timetable while keeping its feasibility, some extra timeslots 'T (artificial timeslots) may be

added to satisfy the assignment of the unscheduled events. There are various ways to calculate the

penalty of scheduling events into artificial timeslots. In [1], the cost function is the sum of the

number of the artificial timeslots and the number of events scheduled in 'T . In [26], the cost

function is the sum of the students scheduled in artificial timeslots, but the final goal is to

minimize the number of events scheduled in 'T . In order to make a comparison with these papers,

the evaluation criteria adopted in this paper is the distance to the feasibility [1], i.e., the number of

events scheduled in artificial timeslots 'T .

3. A clique-based algorithm

To the best of our knowledge, there are very few papers which employ clique-based heuristics

to solve timetabling problems. In [32], Carter et al. pointed out that a clique, a sub-graph where

the vertices were adjacent each other, could represent a set of mutually conflicting events in a

timetabling problem. This set of events had to be scheduled into different timeslots, so the

minimal number of timeslots used would be not less than the size of any clique in the conflict

graph. In their algorithm, a large clique was first determined and the examinations in this clique

had higher priority to be scheduled. In [33], Carter and Johnson observed that there were many

large cliques in the timetabling instances tested by them. They concluded that cliques may help to

extend some traditional approaches for timetabling. Inspired by their ideas, we further develop a

clique-based algorithm for constructing feasible timetables.

Let G be the conflict graph corresponding to a timetabling problem (which essentially

captures H2-type hard constraints); G be the complement graph of G ; V be the vertices of

G ;)(vN be the vertices adjacent to vertex v ;)(cN be the vertices adjacent to vertices in

clique c ;)(vd be the degree of v ;)(vw be the weight of v , namely the number of

students attending the corresponding event;)(cd be the degree of clique c , namely the sum of

the degrees of all vertices in c ;)(cw be the weight of clique c , namely the sum of the

weights of all vertices in c ; and)(cs be the size of clique c , namely the number of vertices in

c . The vertices of a clique c in the complement graph G form an independent set s in the

original graph G . The vertices in s are not adjacent to each other, so they are conflict-free and

can be colored with the same color; that is, the corresponding set of events can be scheduled into

the same timeslot. Notably, our algorithm will consider cliques in complement graph G rather

than cliques in graph G (unlike [32] and [33]).

One can easily see that a particular timeslot in a feasible timetable contains a set of events t

that correspond to a clique of vertices c in the complement graph. So without the constraint of

room allocation, the problem of constructing a feasible timetable for UCTP is equivalent to the

problem of dividing the graph into 45 non-intersecting cliques. Once a set of conflict-free events

t (corresponding to c) is found, the room allocation for events t can be handled by running a

maximum matching algorithm)(tmatchRoom (corresponding to)(cmatchRoom) on the

bipartite graph of events and rooms (RE ×) with edges connecting events with their suitable

rooms. Events which cannot be matched to a room can be left for further consideration. We say a

clique is legal if the corresponding events are conflict-free and all of them are matched to a room

after the maximum matching.

To better explain the relationship between cliques and a feasible timetable, we give an

example (see Fig. 1). Suppose there are 9 events },...,,{ 921 eeeE = , 3 timeslots },,{ 321 tttT = ,

and 3 rooms },,{ 321 rrrR = in a given timetabling problem. Let G in Fig.1 (a) be the graph of

the timetabling problem and G (which is shown Fig.1 (b)) be the complement graph of G . The

clique },,,{ 8321 eeeec = in G is an independent set },,,{ 8321 eeees = in G . Note that the

corresponding events in s are conflict-free, so they can be scheduled into the same timeslot. We

can apply)(cmatchRoom to allocate the rooms to the events (having regard to the H1-type

hard constraints). Since there are only 3 available rooms, at least one of the 4 events will not be

matched to a room. Suppose event 8e is not matched to a room in the maximum matching. We

then remove 8e from c and consider putting this event into another clique. In Fig.1 (c), we

observe that actually G can be divided into 3 cliques },,{ 3211 eeec = , },,{ 6542 eeec =

and },,{ 9873 eeec = . If all of these cliques are legal cliques, then we can easily construct a

feasible timetable shown (for example, the one shown in Fig.1 (d)).

(a) The problem graph G (b) The complement graph G

(c) The graph is divided into 3 cliques (d) A feasible timetable

Fig.1 The relationship between feasible timetable and the cliques of graph

Clearly, one of the key steps of the algorithm is finding cliques. The approach we use to find a

clique c in the graph G ,),,(cVGfindClique , is similar to the algorithm of finding the

largest clique proposed in [34]. However, it is not necessary to find the largest clique because the

number of events in a timeslot should not exceed the number of rooms. So the backtracking step

of the original approach in [34] is eliminated to save processing time. We start with a clique c

(which may be empty or may contain some vertices already) and a set of vertices)(cNV ∩

(with VcN =)(if c is empty) belonging to the graph G . We repeatedly (i) remove the vertex

v with the highest degree from V and add it into c , then (ii) replace V with)(vNV ∩

(that is, all the vertices which are not adjacent to v are removed from V) until the clique stops

expanding when V becomes empty. We finally get a clique c .

For example, in Fig.1 (b), if we begin with an empty clique c , then the vertex 8e in V

with the highest degree (if there are more than one, we randomly select one), is firstly added into

c , and at the same time, the former V is replaced by },,,,{)(973218 eeeeeeNV =∩ . After

this step, 3e becomes the vertex in V with the highest degree, so we add it into c and replace

V with },{}),{(2138 eeeecNV ==∩ . The next vertex added into c will be 2e , followed

by 1e , and so on. We finally obtain a clique },,,{ 1238 eeeec = when V becomes empty.

However, if c is not empty at the beginning with, say, vertex 5e already in the clique, then the

first vertex added into the clique will be 6e , which has the highest degree in

},,{}){(7645 eeeecNV ==∩ . The clique obtained will be },,{ 465 eeec = .

Note that),,(cVGfindClique , which is used repeatedly in our algorithm, is not new and

may not be the best way to find cliques in a graph, but its simplicity makes our algorithm easier to

understand, and it is also very fast, so we adopt it to enhance the computational speed.

We now focus on the problem of dividing the graph G into 45 legal cliques

},...,,{ 4521 cccC = and describe our algorithm in detail. There are three steps in our algorithm.

The pseudo-code of the algorithm is given in Fig.2.

The first step: Initializing

1t 2t 3t

1r 1e 4e 7e

2r 2e 5e 8e

3r 3e 6e 9e

The first step is the initialization of the 45 cliques. At the start, we have 45 empty cliques

},...,,{ 4521 cccC = , a graph G and all vertices V . We will initialize the empty clique in C

one by one. For the initialization of clique ic , instead of selecting the vertex with highest degree

as the first vertex, we randomly choose a vertex iv from V so as to spread out the initialized

cliques on the graph. Then the clique is expanded using),,(icVGfindClique as described above.

(So, the second vertex added into ic will be the one with the highest degree in)(ivN .) Once the

clique ic is obtained, we run)(icmatchRoom on it. The unmatched vertices are removed

from ic while the matched vertices are removed from V . If there are no vertices left in V

after this initialization, we have succeeded in constructing a feasible timetable. However, it is

usually the case that some vertices cannot get into any clique. They will be handled in the next

steps.

The second step: Recombining

The second step is to try to recombine the cliques. This step plays a key role in our algorithm.

There are two main reasons that a vertex cannot be added into any clique. One reason is that it

cannot be matched to a room. The other reason is that it is not adjacent to some vertices in the

clique. Based on these situations, we design a process called)(icgrecombinin to enlarge a

clique ic . The idea of recombining is to obtain a larger clique by removing a portion of vertices

ic from current one ic and use)\,,(ii ccVGfindClique to expand it to be a bigger one.

For each vertex ijv in ic , whether it should be removed or not from the clique is decided by a

probability ρ (10 << ρ); in particular, the vertex will be removed from ic and added into

ic when ρ is greater than a random real number between 0 and 1(using ()rand to implement).

The probability ρ is high initially, but it decreases by multiplying a deterioration rate α

(10 << α) after every N loops, so the vertices being removed become fewer and fewer and

the cliques tend to be stable in later phase. However, we may risk getting a smaller clique. To

prevent this from happening, an acceptance criterion, in which the new clique '
ic obtained by

)(icgrecombinin is accepted only when)()('
ii cscs ≤ or)()('

ii cwcw ≤ or

)()('
ii cdcd ≤ , is designed to guide the search. The reason we accept the new clique with greater

weight is that there are more students scheduled into the timetable. The clique with fewer degrees

is also accepted because it seems that a vertex with low degree has fewer cliques to go to, so it

should be settled into a clique earlier. Note that the order in which vertices in '
ic are considered

has some impact on the maximum matching, so the vertices in '
ic will be randomly ordered

before we run)('
icmatchRoom . We will try K times until we get an acceptable clique;

otherwise, we refuse the new clique '
ic .

 In this step, there are a number of inner loops. For each cycle of the inner loop, we randomly

order the cliques in C , and run the recombining process on each clique one by one according to

that random order. After each inner loop, we lower ρ with the deterioration rate α

(αρρ *=) and start a new inner loop. This step will end when ρ reaches 0.01 or when there

are no vertices left in V .

The third step: Perturbing

 The third step will try to swap some vertices between two cliques so that more vertices can

be reinserted into these two cliques. The idea of perturbing between bipartite graphs is actually the

same as the switching between timeslots. It is not the main part of our algorithm but can be quite

helpful when there are still a few vertices that cannot get into any clique after the second step.

Recombining is actually a hill climbing exercise: the number of unscheduled events decreases

sharply in a short time, but little improvements can be made in later phases when the process

drops into a local optimum. Perturbing brings a lot of benefits when this happens. For stubborn

cases where there are still vertices which do not belong to any clique after the third step, the idea

is that the recombining process and the perturbing process will be run alternatively for as many

times as time allows.

The perturbing step consists of L loops. For each loop of perturbing, we randomly select

M pairs of cliques and mark all of them unvisited. For each unvisited pair of cliques, we

randomly select a vertex v from the first clique ic and push it into the second clique jc . The

vertices)(\ vNcv j= which are not adjacent to v in jc are popped out and pushed into ic .

After this process, vvcc jj \}{' ∪= is a new clique but }{\' vvcc ii ∪= may not be a

clique. However, if both '
ic and '

jc are legal, we accept '
ii cc = and '

jj cc = and try to add

each of the vertex in V into ic or jc one by one, while keeping the legality of these two

cliques. Otherwise, we refuse this swap.

Fig.2 The pseudo-code of the algorithm

The first step: Initializing

for 1←i to 45

 ←iv randomly select a vertex from V

 }{ iii vcc ∪←

),,(ii cVGfindCliquec ← //return a legal clique

)(ii cmatchRoomc ← //return the matched events

 icVV \←

The second step: Recombining

 initialize ρ , α , N and K

 while (ρ >0.01 and V is not empty)

 for 1←n to N

 randomly order the cliques in C

 for 1←i to 45

 icc ← // backup ic before recombining

 falsedone ←

 for each vertex iij cv ∈

 if (()rand>ρ)

 }{ ijii vcc ∪← // ic is the collection of removed vertices

 }{\ ijii vcc ← //remove ijv from ic

)('
ii cgrecombininc ← //return the new clique after recombining

 for 1←k to K

)(''
ii cmatchRoomc ← //return the matched events

 if ()()('
ii cscs ≤ or)()('

ii cwcw ≤ or)()('
ii cdcd ≤)

 '
ii cc ←

 iccVV \∪← //update the vertices in V

 truedone ←

 Break

 if (falsedone =)

 cci ← // we do not accept the new clique

 αρρ *←

The third step: Perturbing

 initialize L and M

if (V is not empty)

 for 1←l to L

 randomly select M pairs of cliques and set them unvisited

 select a pair of unvisited clique (ic , jc)

 ←v randomly select a vertex from ic

)(\ vNcv j←

 }{\' vvcc ii ∪←

 vvcc jj \}{' ∪←

 if ('
ic and '

jc are legal)

 '
ii cc ←

 '
jj cc ←

 for each vertex Vv∈

 if (}{vci ∪ is legal)

 }{vcc ii ∪←

 }{\ vVV ←

 else if (}{vc j ∪ is legal)

 }{vcc jj ∪←

 }{\ vVV ←

schedule the remaining events into artificial timeslots 'T

if (there is still time) run the Recombining and the Perturbing alternately for 100 times

return the number of events scheduled in 'T

4. Experimental results

Our algorithm was tested on the 60 test instances generated by Lewis et al. in [1], which can

be downloaded from http://www.dcs.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm. It

is already known that there is at least one feasible solution for each instance. The number of

timeslots is fixed to be 45 and these instances are classified into three categories: small, medium

and big. As in [1], the limited time for each run is set to be 30, 200, and 800 seconds for each

small, medium and big instance respectively. More information about this benchmark can be

obtained in [1].

 We successfully constructed feasible solutions for 6 instances only after the first step. This

showed that our algorithm’s initializing step was not as effective when compared with the

sequential technique in [26]. However, our initializing step ran in less time and created a good

beginning for further improvement steps.

There are six parameters in our algorithm: α , ρ , N , K , L and M . They have a

great impact on the performance of our algorithm. In order to find a good combination of values

for α and ρ , we first fixed 100=N , 1=K , 1000=L and 16* EEM = . The initial

value of α and ρ were set to be 0.8 and 0.3. At first, we fixed α but increased ρ by 0.05

for each test. From the tests, we found that the algorithm performed quite well when ρ was

around 0.5. For tuning α , we also fixed ρ to be 0.6 while increasing α by 0.05 for each test.

The values of α and ρ were finally fixed according to the average performance of the tests

over all the instances. After we fixed α and ρ , N , K , L and M were carefully tuned

according to the running time and the performance. For the recombining process, we first set

100=N and 1=K , and then for each test, we increased N by 100 and increased K by 1

alternately. The running time of test for each combination value of N and K was set to be half

of the time limit. The combination of values for N and K for each instance was recorded, and

the best combination was finally selected according to their average result over all the instances.

For the perturbing process, L and M were also tuned in a similar way. But L was set at

1000 and M was set at 16* EE at first, and then we increased L by 1000 and increased

M by 16* EE alternately. However, the running time for each test was half of the

recombining process, namely, one quarter of the time limit. In our experiments, we used the same

combination of values for α , ρ , N , K , L and M , which had the best average results

over all the instances.

In the process of recombining, the deterioration rate α was fixed to be 0.95 and the

probability ρ was set to be 0.6 initially. The number of cycles N for each inner loop and the

number of times K for maximum matching on a clique had great impact on the performance of

the algorithm. They were carefully tuned and were finally set as 300=N and 5=K . The

greater N and K were, the better results we obtained, but of course, the more CPU time was

used. For the perturbing step, the loops of perturbing L was set as 410 and the number of pairs

of cliques M was set at 4* EE , that is, about half of the total pairs of cliques have a

chance to be perturbed. For small and medium instances, most of the unscheduled events could be

inserted into timeslots after perturbing. But for big instances, we still needed to try to run the

recombining process and the perturbing process alternately for 100 times.

 The proposed algorithm was implemented in C++, and was run on a Pentium IV, 2.60 GHz

and 512 Mb of RAM under Windows XP. We carried out 20 runs of our program for each of the

60 instances (i.e. comprising 20 small, 20 medium and 20 big instances). The best and average

results were recorded and compared with HAS [26] and Lewis I-III [1]. They are shown in Table 1,

Table 2 and Table 3. The column “Min” shows the minimal number of unscheduled events (the

events scheduled into artificial timeslots) during the 20 runs of the algorithm. In the brackets of

the same column, we give the number of times that the best solution was found over the 20 runs.

The column “Ave” denotes the average number of unscheduled events over 20 runs. In the column

“CPU(s)” we present the average CPU time (in seconds), but in HSA [26], they provided the

minimal CPU time needed to find the best solution, and value 0 means that the constructive

heuristic could find a feasible solution using just 45 timeslots after initialization. The last row of

each table calculates the number of instances we succeeded in constructing feasible timetables.

The columns Lewis I, Lewis II and Lewis III contain the best results from 20 runs of the grouping

genetic algorithm (GGA)[1] as given in [35].

Table 1: Small Instances

Our algorithm HSA Instance

name Min Ave CPU(s) Min Ave CPU(s)

Lewis

I

Lewis

II

Lewis

III

S1 0(20) 0 0.05 0(20) 0 0 0 0 0

S2 0(20) 0 0.02 0(20) 0 0 0 0 0

S3 0(20) 0 1.25 0(20) 0 9 0 0 0

S4 0(20) 0 0.05 0(20) 0 0 0 0 0

S5 0(20) 0 4.60 0(20) 0 5 5 0 0

S6 0(20) 0 0.02 0(20) 0 0 0 0 0

S7 0(16) 0.2 0.02 0(20) 0 0 0 0 0

S8 0(14) 0.3 0.05 0(1) 1.9 79 12 4 0

S9 0(17) 0.15 0.02 0(2) 3.85 84 4 0 0

S10 0(20) 0 1.25 0(20) 0 15 0 0 0

S11 0(20) 0 0.02 0(20) 0 0 0 0 0

S12 0(20) 0 2.75 0(20) 0 0 0 0 0

S13 0(20) 0 1.00 0(9) 1 15 0 0 0

S14 0(7) 0.7 70.55 3(1) 5.95 136 17 3 0

S15 0(20) 0 0.55 0(20) 0 0 0 0 0

S16 0(20) 0 0.35 0(20) 0 13 0 0 0

S17 0(20) 0 2.00 0(20) 0 13 0 0 0

S18 0(6) 0.7 51.65 0(11) 0.45 36 3 3 0

S19 0(20) 0 1.00 0(11) 1.2 25 3 3 0

S20 0(17) 0.15 70.85 0(20) 0 0 0 0 0

Total 20 19 14 18 20

The timetabling problem is an instance of a larger family of grouping problems [1], [36], where a

set of items S required to be partitioned into a collection of mutually disjoint groups is , such

that:

Ssi =∪ and φ=∩ ji ss for ji ≠

Falkenauer [36] pointed out that when the traditional genetic algorithm (GA) is applied to such

grouping problems, there may be high redundancy in representations and operators, so they

proposed a variation of GA named grouping genetic algorithm (GGA) and first applied it to graph

coloring problems. Recently, an improved GGA (Lewis I, Lewis II and Lewis III) proposed by

Lewis et al. [1] was also successfully applied to the timetabling problem. In Lewis’s algorithm,

each timetable is coded as a two dimensional matrix where rows represent rooms and columns

represent timeslots. The structure of the algorithm is similar to GA, but they designed a special

genetic cross operator. This operator comprises four stages: point selection, injection, removal of

duplicates using adaptation, and reconstruction. They also employed a new method for measuring

population diversities and distances between individuals with the grouping representation. These

mechanisms are well designed according to the features of the grouping problems and it was

proved to be efficient in constructing feasible solutions for UCTP.

Table 2: Medium Instances

Our algorithm HSA Instance

name Min Ave CPU(s) Min Ave CPU(s)

Lewis

I

Lewis

II

Lewis

III

M1 0(20) 0 5.85 0(20) 0 0 0 0 0

M2 0(20) 0 1.5 0(20) 0 0 0 0 0

M3 0(20) 0 5.05 0(20) 0 8 0 0 0

M4 0(20) 0 2.05 0(20) 0 3 0 0 0

M5 0(20) 0 59.75 0(20) 0 85 8 0 0

M6 0(20) 0 7.95 0(20) 0 20 15 0 0

M7 0(1) 3.55 134.45 1(1) 4.15 440 41 34 14

M8 0(20) 0 11.35 0(20) 0 12 21 9 0

M9 0(1) 2.15 123.2 0(1) 4.9 269 30 17 2

M10 0(20) 0 0.35 0(20) 0 0 0 0 0

M11 0(20) 0 3.4 0(20) 0 25 12 0 0

M12 0(20) 0 6.5 0(20) 0 54 0 0 0

M13 0(20) 0 9.2 0(12) 0.5 172 23 3 0

M14 0(20) 0 10.9 0(20) 0 59 0 0 0

M15 0(20) 0 7 0(19) 0.05 72 10 0 0

M16 0(15) 0.3 21.65 1(2) 5.15 733 50 30 1

M17 0(20) 0 1.8 1(20) 0 239 21 0 0

M18 0(20) 0 8.65 0(2) 6.05 429 15 0 0

M19 0(14) 0.3 16.45 0(3) 5.45 511 51 0 0

M20 0(13) 0.65 24.55 2(1) 10.6 457 15 0 3

Total 20 19 7 15 16

HSA [26] initializes the timetable by using two graph coloring heuristic methods: Largest Degree

first (LD) and Least Saturation Degree first (LSD). When there are still events that cannot be

scheduled within 45 timeslots after initialization, it opens additional timeslots, called artificial

timeslots, to hold the remaining events. However, scheduling the events into the artificial timeslots

will be punished by a objective function)(sf , which calculates the number of events assigned in

the artificial timeslots. In the improving phase, HSA tries to reduce)(sf by combining SA and

three neighborhood operations: change the assignment of one event, swap two events, and perform

the modified kempe chain move. This kempe chain move operates between two randomly selected

timeslots. The events between both timeslots are connected if they conflict or they are scheduled

in the same room. Before this move is performed, an event is randomly selected, a chain is

triggered from this event to its connected events, and this chain is triggered alternately between

these two timeslots. From the performance of HSA, one can conclude that this operation works

quite well when it is combined with SA.

Table 3: Big Instances

Our algorithm HSA Instance

name Min Ave CPU(s) Min Ave CPU(s)

Lewis

I

Lewis

II

Lewis

III

B1 0(20) 0 18.4 0(20) 0 0 0 0 0

B2 0(20) 0 94.2 0(20) 0 283 0 0 0

B3 0(20) 0 55.4 0(20) 0 447 0 0 0

B4 0(20) 0 133.5 0(20) 0 406 32 30 8

B5 1(2) 3.2 353.1 0(6) 1.1 743 31 24 30

B6 10(1) 15.4 319.25 5(1) 8.45 893 90 71 77

B7 39(2) 46.65 383.85 47(1) 58.3 966 150 145 150

B8 0(20) 0 136.75 0(20) 0 210 35 30 5

B9 0(20) 0 122.6 0(19) 0.05 419 26 18 3

B10 0(3) 1.95 319.6 0(6) 1.25 660 36 32 24

B11 0(2) 2.35 271.7 0(14) 0.35 444 43 37 22

B12 0(20) 0 54.55 0(20) 0 240 4 0 0

B13 0(20) 0 84.15 0(20) 0 274 23 10 0

B14 0(20) 0 67.8 0(20) 0 271 8 0 0

B15 0(20) 0 83.95 0(20) 0 255 120 98 0

B16 0(20) 0 46.85 0(2) 2 755 120 100 19

B17 0(6) 2.05 554.35 76(1) 89.9 998 260 243 163

B18 0(4) 1.7 437.95 53(1) 62.6 764 199 173 164

B19 40(1) 53.2 410.45 109(1) 127 998 262 253 232

B20 9(2) 14.05 370.5 40(1) 46.7 827 186 165 149

Total 15 14 3 5 7

For the big instances, we obtained better results for almost all instances in comparison with

Lewis I, Lewis II and Lewis III. Compared with HSA, our algorithm obtained improved results

(shown in bold font) for about half of the big instances. But for some small instances, such as S18

and S20, our algorithm returned fewer feasible solutions in 20 runs. For B6, our algorithm

dropped into local optima and returned a worse solution in the end. Our algorithm also failed to

construct a feasible timetable for B5 while HSA was able to return one. However, it is worth

mentioning that, for some of the hardest instances, such as B17 and B18, our algorithm was still

able to construct feasible solutions, whereas HSA was not able to do so. For B16, B19 and B20,

our algorithm performed better than HSA. This shows the advantage of our algorithm in solving

big instances. For other instances, our algorithm also performed no worse than HSA. On the whole,

our algorithm successfully constructed feasible timetables for almost all instances in short time.

We conclude that our algorithm is robust and efficient in constructing feasible solutions for

timetabling problems.

5. Conclusion and future work

Our algorithm has been successfully applied to construct feasible solutions for difficult

timetabling problems. The computational results demonstrate our algorithm’s high efficiency, and

also proved that it could compete with other effective algorithms. The recombining process

introduced in our algorithm can be easily extended and applied to solve more timetabling

problems.

Acknowledgments

The authors thank the anonymous referees for their helpful comments and suggestions which

contributed to the improvement of the presentation and the contents of this paper. The authors also

thank Dr. Bethany Chan for improving the readability and clarity of the paper. This work was

supported by the National Nature Science Foundation of China (Grant no. 60773126) and the

Province Nature Science Foundation of Fujian (Grant no. A0710023).

References

[1] Rhydian Lewis and Ben Paechter. Finding Feasible Timetables Using Group-Based

Operators. IEEE Transactions on Evolutionary Computation, 11(3), 397-413 (2007).
[2] Daskalaki S, Birbas T. Efficient solutions for a university timetabling problem through

integer programming. European Journal of Operational Research, 160, 106-120 (2005).
[3] Daskalaki S, Birbas T, Housos E. An integer programming formulation for a case study in

university timetabling. European Journal of Operational Research, 153, 117-135 (2004).

[4] Al-Yakoob SM, Sherali HD. A mixed-integer programming approach to a class timetabling

problem: A case study with gender policies and traffic considerations. European Journal of

Operational Research, 180(3), 1028-1044 (2007).
[5] Gonzalez-del-Campo R, Saenz-Perez F. Programmed Search in a timetabling problem over

finite domains. Electronic Notes in Theoretical Computer Science, 177, 253-267 (2007).
[6] C. Valouxis, E. Housos. Constraint programming approach for school timetabling.

Computers & Operations Research, 30, 1555-1572 (2003).

[7] http://www.idsia.ch/Files/ttcomp2002/. (2005).
[8] Abramson D. Constructing school timetables using simulated annealing: Sequential and

parallel algorithms. Management Science, 37(1), 98-113(1991).
[9] Philipp Kostuch. The University Course Timetabling Problem with a Three-Phase Approach.

Proceedings of the 5th International Conference on Practice and Theory of Automated
Timetabling V LNCS 1153, Berlin: Springer, 109-125 (2004).

[10] School timetables: A case study in simulated annealing. In V. Vidal (Ed.), Applied simulated
annealing (pp. 103-124). Lecture notes in economics and mathematics systems, Berlin:
Springer, Chapter 5.

[11] Abramson D, Krishnamoorthy M, Dang H. Simulated annealing cooling schedules for the
school timetabling problem. Asia-Pacific Journal of Operational Research, 16, 1- 22(1999).

[12] Yongkai Liu, Defu Zhang, Stephen C.H. Leung. A Simulated Annealing algorithm with a

new Neighborhood Structure for the Timetabling Problem. To be published by the 2009

World Summit on Genetic and Evolutionary Computation (2009 GEC Summit).

[13] Pasquale Avella, Bernardo D’Auria Saverio Salerno, Igor Vasil’ev. A computational study of
local search algorithms for Italian high-school timetabling. Springer Science Business Media,
LLC (2007).

[14] Beligiannis GN, Moschopoulos CN, Kaperonis GP, Likothanassia SD. Applying

evolutionary computation to the school timetabling problem: The Greek case. Computers &

Operations Research, 35(4), 1265-1280 (2008).

[15] Papoutsis K, Valouxis C, Housos E. A column generation approach for the timetabling

problem of Greek high schools. Journal of the Operational Research Society, 54(3), 230-238

(2003).
[16] Jean-François Cordeau, Brigitte Jaumard, Rodrigo Morales. Efficient Timetabling Solution

with Tabu Search. http://www.idsia.ch/Files/ttcomp2002/results.htm. (2002).
[17] Luca Di Gaspero and Andrea Schaerf. Timetabling Competition TTComp 2002: Solver

Description. http://www.idsia.ch/Files/ttcomp2002/results.htm. (2002).
[18] E. Burke, Y. Bykov, J. Newall, S. Petrovic. A Time-Predefined Local Search Approach to

Exam Timetabling Problems. Computer Science Technical Report No. NOTTCS-TR-2001-6,
Univ. of Nottingham, (2001).

[19] Yuri Bykov. The Description of the Algorithm for International Timetabling competition.
http://www.idsia.ch/Files/ttcomp2002/results.htm. (2002).

[20] M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical Computer
Science, 344(2-3), 243-278 (2005).

[21] M. Eley. Ant algorithms for the exam timetabling problem. In: E.K. Burke and H. Rudova
(eds). Practice and Theory of Automated Timetabling: Selected Papers from the 6th
International Conference. Lecture Notes in Computer Science, 3867, 364-382 (2007).

[22] Smith KA, Abramson D, Duke D. Hopfield neural networks for timetabling: formulations,
methods, and comparative results. Computers and Industrial Engineering, 44(2), 283-305
(2003).

[23] M.R. Malim, A.T. Khader and A. Mustafa. Artificial immune algorithms for university
timetabling. In: E.K. Burke and H. Rudova (eds.): Proceedings of the 6th International
Conference on Practice and Theory of Automated Timetabling, 234-245. August 2006, Brno,
Czech Republic. (2006).

[24] Avella P, D’Auria B, Salerno S, Vasil’ev I. A computational study of local search algorithms

for Italian high-school timetabling. Journal of Heuristics, 13, 543-556 (2007).

[25] Rossi-Doria, M. Samples, M. Birattari, M.Chiarandini, J. Knowles, M. Manfrin, M.

Mastrolilli, L.Paquete, B. Paechter, and T. Stuitzle. A comparison of the performance of

different metaheuristics on the timetabling problem. In Practice and Theory of Automated

Timetabling (PATAT) IV, ser. Lecture Notes in Computer Science, E. Burke and P. de

Causmaecker, Eds. Berlin, Germany: Springer-Verlag, 2740, 329-351(2003).

[26] Mauritsius Tuga, Regina Berretta and Alexandre Mendes. A Hybrid Simulated Annealing

with Kempe Chain Neighborhood for the University Timetabling Problem. 6th IEEE/ACIS

International Conference on Computer and Information Science (2007).

[27] D.J.A. Welsh and M.B. Powell. The upper bound for the chromatic number of a graph and its

application to timetabling problems. The Computer Journal, 11: 41-47 (1967).

[28] D. Brelaz. New methods to color the vertices of a graph. Communication of the ACM, 22(4),

251-256 (1979).

[29] West, D.B. Introduction to Graph Theory (2nd edition). Prentice Hall (2001).

[30] S. Broder. Final examination scheduling. Communications of the ACM, 7, 494-498 (1964).

[31] E. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic

for educational timetabling problems. European Journal of Operational Research,

176,177-192 (2007).

[32] M.W. Carter, G. Laporte and S.Y. Lee. Examination timetabling: Algorithmic strategies and

applications. Journal of Operational Research Society, 47(3), 373-383 (1996).

[33] M.W. Carter and D.G. Johnson. Extended clique initialisation in examination timetabling.

Journal of Operational Research Society, 52, 538-544 (2001).

[34] Patric R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Appl.

Math., 120, 197-207 (2002).

[35] http://www.dcs.napier.ac.uk/~benp/centre/timetabling/experimentalresults2.htm

[36] Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, Chichester (1998)

