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A clique-based algorithm for constructing feasible timetables 
Yongkai Liu, Defu Zhang and Francis Y.L. Chin 
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Department of Computer Science, University of Hong Kong, Hong Kong 

Abstract 

Constructing a feasible solution, where the focus is on “hard” constraints only, is an important 

part of solving timetabling problems. For the University Course Timetabling Problem (UCTP), we 

propose a heuristic algorithm to schedule events to timeslots based on cliques, each representing a 

set of events that could be scheduled in the same timeslot, which the algorithm constructs. Our 

algorithm has been tested on a set of well-known instances, and the experimental results show that 

our algorithm compares favorably with other effective algorithms. 
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1. Introduction 

The educational timetabling problem is concerned with the scheduling of a number of events 

(courses, lectures, examinations) into limited resources, such as rooms and timeslots, subject to a 

set of constraints [1]. Some events have students in common so that they cannot be scheduled into 

the same timeslot. This is one instance of a so-called “hard” constraint. Another hard constraint is 

that the event must be scheduled into a room which satisfies its requirements (e.g. in terms of the 

room capacity or equipment available in the room). A timetable which satisfies all the hard 

constraints is called a feasible solution. Once the feasible timetable is constructed, a further step is 

to improve the quality of the timetable by considering additional requirements called soft 

constraints, such as spreading out the events which involve the same students or teachers so that 

students and teachers spread their workload throughout the week. Soft constraints are not 

compulsory, but they should be satisfied as much as possible. 

Many efficient algorithms, such as traditional Integer Programming [2], [3], [4] Constraint 

Logic Programming [5], [6] and meta-heuristic algorithms [7-23], have been designed to solve the 

educational timetabling problem. It should be noted that the University Course Timetabling 

Problem (UCTP) competition, organized by Metaheuristics Network and sponsored by PATAT in 

2002 [7], has greatly promoted the application of meta-heuristic algorithms. The first-place winner 

of the UCTP competition was a Simulated Annealing (SA) based algorithm designed by Philipp 

Kostuch [9] with a special temperature cooling strategy. The third place winner was also a 

SA-based strategy designed by Yuri Bykov [19] who modified the SA-variant called the Great 

Deluge (GD) algorithm, which was first employed by E. Burke [18] to solve examination 

timetabling problems. To the best of our knowledge, SA was first used by Abramson et al. [8] to 



construct timetables in 1991. It has been proved that SA can efficiently solve many kinds of 

timetabling problems in [9-13]. Tabu Search (TS) based algorithms proposed by Brigitte Jaumard 

et al.[16] and by Luca Di Gaspero [17] ranked second and fourth in the UCTP competition 

respectively. While it is true that the TS approach could construct high-quality timetables, more 

effort was needed to design the Tabu mechanisms. Although genetic algorithms (GA) did not 

perform well in the UCTP competition, they have been shown to be effective for various other 

timetabling problems [14], [25]. For instance, Grigorios et al. [14] proposed a special genetic 

algorithm, which does not use traditional crossover but only adopts the mutation operator, to solve 

the Greek high-school timetabling problems, and experimental results show that GA was more 

effective than the column generation approach presented in [15]. In the literature, other algorithms 

such as Ant Colony Algorithm [20], [21], Neural Networks [22], and Artificial Immune 

Algorithms [23] were also successfully applied to timetabling problems. 

Most of the papers consider both hard constraints and soft constraints together. A popular 

method [14], [24] is to integrate all the constraints into a single objective function where hard 

constraints are associated with a much higher cost coefficient than soft constraints. Another 

method [25] is to employ a two-stage approach, in which the first stage deals with constructing a 

feasible timetable, and the second stage tries to minimize the violations of soft constraints. In most 

cases constructing a feasible solution is considered more important than reducing the violations of 

soft constraints, and the infeasible timetables are rarely acceptable in practice. However, as [26] 

points out, there are only few papers concentrating solely on constructing feasible solutions. In 

this paper, we focus on constructing feasible solutions. 

Two events are conflicting if there is an overlap in the students attending them. In general, 

conflicting events are not allowed to be scheduled in the same timeslot, and it is often defined as a 

hard constraint. If we only consider this constraint, the timetabling problem can be regarded as a 

particular case of graph coloring [27] of the conflict graph, in which events are represented by 

vertices, conflicts between events are represented by edges, timeslots are represented by the colors, 

and allocating timeslots to events can be represented by assigning colors to vertices with no 

adjacent vertices having the same color. Thus unsurprisingly, some timetabling algorithms are 

based on graph coloring algorithms with additional processing done to take into account the 

timetabling problem’s other constraints (e.g. the suitable room constraint). In this paper, we do not 

rely on graph coloring but instead introduce a clique-based heuristic. To the best of our knowledge, 

there are very few papers which employ clique-based heuristics to solve timetabling problems. 

The sequential techniques [28], [29] are graph coloring based constructive methods, in which 

the events are first ordered by some metric [30], [31] (such as Largest Degree first, Least 

Saturation Degree first or Largest Enrolment first) and then the events are scheduled into the 

resource one by one. Often not all events can be scheduled and so further processes are required to 



handle the unscheduled events. Carter et al. [32] employed a backtracking technique to reverse 

earlier assignments of events in order to release resources for unscheduled events. Kostuch [9] 

designed a five-step approach – which included the initial attempt, improvement attempt, shuffling, 

blow-ups and opening the last slots – to construct a feasible timetable using less than the specified 

number of timeslots.  

Instead of scheduling events one by one, our approach tries to schedule all the independent 

events at one step by considering cliques of the complement of the conflict graph. These 

independent events will then be allocated to different rooms by bipartite matching. Our 

clique-based approach is not only simple but also provides a framework for two heuristic steps, 

the recombining step and the perturbing step, to efficiently expand the size of the cliques formed 

and in so doing reduce the number of unscheduled events. 

Recently, Lewis et al [1] created 60 test instances which were “harder” than those used in the 

UCTP competition in the sense that feasible solutions were harder to construct. In [1], the authors 

reported that some traditional sequential techniques could only schedule about 80% of the events. 

Thus far, there are no algorithms that can solve all 60 test instances. Since some timetabling 

problems, upon removing the hard constraint of allocating suitable rooms for events, transform 

into very hard graph coloring problems, it is not surprising that the sequential techniques may fail 

to construct feasible timetables for some instances. We have applied our heuristic on the 60 test 

instances and have compared our results with that of the four algorithms proposed in [26] and [1]. 

Our algorithm, besides giving comparable, if not better, performance in almost all instances 

(except only one) takes less running time. 

 The rest of this paper is organized as follows. In Section 2, we give the problem definition 

and evaluation criteria. In Section 3, we present our algorithm based on cliques. In Section 4, we 

analyze the experimental results of our algorithm when tested on the 60 test instances given in [1] 

and compare such results with the algorithms given in [26] and [1]. Section 5 concludes. 

2. Problem definition and evaluation criteria 

The UCTP is defined to schedule a set of events E  into a set of timeslots T  and a set of 

rooms R , subject to a set of constraints H . The problem considered by this paper is a particular 

version of UCTP, in which the goal is to construct a feasible timetable where the hard constraints 

are as follows: 

 

H1. Every event must be scheduled into a suitable room which meets its requirements. 

H2. No student is allowed to attend more than one event in the same timeslot. 

H3. No room is allowed to be occupied by more than one event in the same timeslot. 

 

 Every room possesses a set of features, such as room size and availability of certain 



equipment. Correspondingly, every event must be allocated to a room that meets its requirements. 

So the number of available rooms for each event is fixed for a particular timetabling problem. A 

feasible timetable should contain all the events without violating any hard constraints. The number 

of timeslots in UCTP is assumed to be 45 (this parameter, which is based on 9 timeslots per day on 

a 5-day week, can be readily changed), but when it is hard to schedule all the events into the 

timetable while keeping its feasibility, some extra timeslots 'T  (artificial timeslots) may be 

added to satisfy the assignment of the unscheduled events. There are various ways to calculate the 

penalty of scheduling events into artificial timeslots. In [1], the cost function is the sum of the 

number of the artificial timeslots and the number of events scheduled in 'T . In [26], the cost 

function is the sum of the students scheduled in artificial timeslots, but the final goal is to 

minimize the number of events scheduled in 'T . In order to make a comparison with these papers, 

the evaluation criteria adopted in this paper is the distance to the feasibility [1], i.e., the number of 

events scheduled in artificial timeslots 'T . 

 

3. A clique-based algorithm 

To the best of our knowledge, there are very few papers which employ clique-based heuristics 

to solve timetabling problems. In [32], Carter et al. pointed out that a clique, a sub-graph where 

the vertices were adjacent each other, could represent a set of mutually conflicting events in a 

timetabling problem. This set of events had to be scheduled into different timeslots, so the 

minimal number of timeslots used would be not less than the size of any clique in the conflict 

graph. In their algorithm, a large clique was first determined and the examinations in this clique 

had higher priority to be scheduled. In [33], Carter and Johnson observed that there were many 

large cliques in the timetabling instances tested by them. They concluded that cliques may help to 

extend some traditional approaches for timetabling. Inspired by their ideas, we further develop a 

clique-based algorithm for constructing feasible timetables. 

Let G  be the conflict graph corresponding to a timetabling problem (which essentially 

captures H2-type hard constraints); G  be the complement graph of G ; V  be the vertices of 

G ; )(vN  be the vertices adjacent to vertex v ; )(cN  be the vertices adjacent to vertices in 

clique c ; )(vd  be the degree of v ; )(vw  be the weight of v , namely the number of 

students attending the corresponding event; )(cd  be the degree of clique c , namely the sum of 

the degrees of all vertices in c ; )(cw  be the weight of clique c , namely the sum of the 

weights of all vertices in c ; and )(cs  be the size of clique c , namely the number of vertices in 

c . The vertices of a clique c  in the complement graph G  form an independent set s  in the 

original graph G . The vertices in s  are not adjacent to each other, so they are conflict-free and 

can be colored with the same color; that is, the corresponding set of events can be scheduled into 

the same timeslot. Notably, our algorithm will consider cliques in complement graph G  rather 



than cliques in graph G  (unlike [32] and [33]). 

One can easily see that a particular timeslot in a feasible timetable contains a set of events t  

that correspond to a clique of vertices c  in the complement graph. So without the constraint of 

room allocation, the problem of constructing a feasible timetable for UCTP is equivalent to the 

problem of dividing the graph into 45 non-intersecting cliques. Once a set of conflict-free events 

t  (corresponding to c ) is found, the room allocation for events t  can be handled by running a 

maximum matching algorithm )(tmatchRoom  (corresponding to )(cmatchRoom ) on the 

bipartite graph of events and rooms ( RE × ) with edges connecting events with their suitable 

rooms. Events which cannot be matched to a room can be left for further consideration. We say a 

clique is legal if the corresponding events are conflict-free and all of them are matched to a room 

after the maximum matching.  

To better explain the relationship between cliques and a feasible timetable, we give an 

example (see Fig. 1). Suppose there are 9 events },...,,{ 921 eeeE = , 3 timeslots },,{ 321 tttT = , 

and 3 rooms },,{ 321 rrrR = in a given timetabling problem. Let G  in Fig.1 (a) be the graph of 

the timetabling problem and G  (which is shown Fig.1 (b)) be the complement graph of G . The 

clique },,,{ 8321 eeeec = in G  is an independent set },,,{ 8321 eeees =  in G . Note that the 

corresponding events in s  are conflict-free, so they can be scheduled into the same timeslot. We 

can apply )(cmatchRoom  to allocate the rooms to the events (having regard to the H1-type 

hard constraints). Since there are only 3 available rooms, at least one of the 4 events will not be 

matched to a room. Suppose event 8e  is not matched to a room in the maximum matching. We 

then remove 8e  from c  and consider putting this event into another clique. In Fig.1 (c), we 

observe that actually G  can be divided into 3 cliques },,{ 3211 eeec = , },,{ 6542 eeec =  

and },,{ 9873 eeec = . If all of these cliques are legal cliques, then we can easily construct a 

feasible timetable shown (for example, the one shown in Fig.1 (d)). 

             

(a) The problem graph G              (b) The complement graph G  



              
(c) The graph is divided into 3 cliques             (d) A feasible timetable 

Fig.1 The relationship between feasible timetable and the cliques of graph 

 

Clearly, one of the key steps of the algorithm is finding cliques. The approach we use to find a 

clique c  in the graph G , ),,( cVGfindClique , is similar to the algorithm of finding the 

largest clique proposed in [34]. However, it is not necessary to find the largest clique because the 

number of events in a timeslot should not exceed the number of rooms. So the backtracking step 

of the original approach in [34] is eliminated to save processing time. We start with a clique c  

(which may be empty or may contain some vertices already) and a set of vertices )(cNV ∩  

(with VcN =)(  if c  is empty) belonging to the graph G . We repeatedly (i) remove the vertex 

v  with the highest degree from V  and add it into c , then (ii) replace V  with )(vNV ∩  

(that is, all the vertices which are not adjacent to v  are removed from V ) until the clique stops 

expanding when V  becomes empty. We finally get a clique c .  

For example, in Fig.1 (b), if we begin with an empty clique c , then the vertex 8e  in V  

with the highest degree (if there are more than one, we randomly select one), is firstly added into 

c , and at the same time, the former V  is replaced by },,,,{)( 973218 eeeeeeNV =∩ . After 

this step, 3e  becomes the vertex in V with the highest degree, so we add it into c  and replace 

V with },{}),{( 2138 eeeecNV ==∩ . The next vertex added into c  will be 2e , followed 

by 1e , and so on. We finally obtain a clique },,,{ 1238 eeeec =  when V  becomes empty. 

However, if c  is not empty at the beginning with, say, vertex 5e  already in the clique, then the 

first vertex added into the clique will be 6e , which has the highest degree in 

},,{}){( 7645 eeeecNV ==∩ . The clique obtained will be },,{ 465 eeec = . 

Note that ),,( cVGfindClique , which is used repeatedly in our algorithm, is not new and 

may not be the best way to find cliques in a graph, but its simplicity makes our algorithm easier to 

understand, and it is also very fast, so we adopt it to enhance the computational speed.  

We now focus on the problem of dividing the graph G  into 45 legal cliques 

},...,,{ 4521 cccC =  and describe our algorithm in detail. There are three steps in our algorithm. 

The pseudo-code of the algorithm is given in Fig.2. 

The first step: Initializing 

 
1t  2t  3t  

1r  1e  4e  7e  

2r  2e  5e  8e  

3r  3e  6e  9e  



The first step is the initialization of the 45 cliques. At the start, we have 45 empty cliques 

},...,,{ 4521 cccC = , a graph G  and all vertices V . We will initialize the empty clique in C  

one by one. For the initialization of clique ic , instead of selecting the vertex with highest degree 

as the first vertex, we randomly choose a vertex iv  from V  so as to spread out the initialized 

cliques on the graph. Then the clique is expanded using ),,( icVGfindClique as described above. 

(So, the second vertex added into ic  will be the one with the highest degree in )( ivN .) Once the 

clique ic  is obtained, we run )( icmatchRoom  on it. The unmatched vertices are removed 

from ic  while the matched vertices are removed from V . If there are no vertices left in V  

after this initialization, we have succeeded in constructing a feasible timetable. However, it is 

usually the case that some vertices cannot get into any clique. They will be handled in the next 

steps. 

The second step: Recombining 

The second step is to try to recombine the cliques. This step plays a key role in our algorithm. 

There are two main reasons that a vertex cannot be added into any clique. One reason is that it 

cannot be matched to a room. The other reason is that it is not adjacent to some vertices in the 

clique. Based on these situations, we design a process called )( icgrecombinin  to enlarge a 

clique ic . The idea of recombining is to obtain a larger clique by removing a portion of vertices 

ic  from current one ic  and use )\,,( ii ccVGfindClique  to expand it to be a bigger one. 

For each vertex ijv  in ic , whether it should be removed or not from the clique is decided by a 

probability ρ  ( 10 << ρ ); in particular, the vertex will be removed from ic  and added into 

ic  when ρ  is greater than a random real number between 0 and 1(using ()rand to implement). 

The probability ρ  is high initially, but it decreases by multiplying a deterioration rate α  

( 10 << α ) after every N  loops, so the vertices being removed become fewer and fewer and 

the cliques tend to be stable in later phase. However, we may risk getting a smaller clique. To 

prevent this from happening, an acceptance criterion, in which the new clique '
ic  obtained by 

)( icgrecombinin is accepted only when )()( '
ii cscs ≤  or )()( '

ii cwcw ≤  or 

)()( '
ii cdcd ≤ , is designed to guide the search. The reason we accept the new clique with greater 

weight is that there are more students scheduled into the timetable. The clique with fewer degrees 

is also accepted because it seems that a vertex with low degree has fewer cliques to go to, so it 

should be settled into a clique earlier. Note that the order in which vertices in '
ic  are considered 

has some impact on the maximum matching, so the vertices in '
ic  will be randomly ordered 

before we run )( '
icmatchRoom . We will try K  times until we get an acceptable clique; 

otherwise, we refuse the new clique '
ic .  

 In this step, there are a number of inner loops. For each cycle of the inner loop, we randomly 

order the cliques in C , and run the recombining process on each clique one by one according to 

that random order. After each inner loop, we lower ρ  with the deterioration rate α  



( αρρ *= ) and start a new inner loop. This step will end when ρ  reaches 0.01 or when there 

are no vertices left in V .  

The third step: Perturbing 

 The third step will try to swap some vertices between two cliques so that more vertices can 

be reinserted into these two cliques. The idea of perturbing between bipartite graphs is actually the 

same as the switching between timeslots. It is not the main part of our algorithm but can be quite 

helpful when there are still a few vertices that cannot get into any clique after the second step. 

Recombining is actually a hill climbing exercise: the number of unscheduled events decreases 

sharply in a short time, but little improvements can be made in later phases when the process 

drops into a local optimum. Perturbing brings a lot of benefits when this happens. For stubborn 

cases where there are still vertices which do not belong to any clique after the third step, the idea 

is that the recombining process and the perturbing process will be run alternatively for as many 

times as time allows. 

The perturbing step consists of L  loops. For each loop of perturbing, we randomly select 

M  pairs of cliques and mark all of them unvisited. For each unvisited pair of cliques, we 

randomly select a vertex v  from the first clique ic  and push it into the second clique jc . The 

vertices )(\ vNcv j=  which are not adjacent to v  in jc  are popped out and pushed into ic . 

After this process, vvcc jj \}{' ∪=  is a new clique but }{\' vvcc ii ∪=  may not be a 

clique. However, if both '
ic  and '

jc  are legal, we accept '
ii cc =  and '

jj cc =  and try to add 

each of the vertex in V  into ic  or jc  one by one, while keeping the legality of these two 

cliques. Otherwise, we refuse this swap. 

 

 

Fig.2 The pseudo-code of the algorithm 

The first step: Initializing 

for 1←i  to 45 

    ←iv randomly select a vertex from V  

    }{ iii vcc ∪←  

    ),,( ii cVGfindCliquec ← //return a legal clique 

    )( ii cmatchRoomc ← //return the matched events 

    icVV \←  

The second step: Recombining 

   initialize ρ , α , N  and K  

   while ( ρ >0.01 and V  is not empty) 

        for 1←n  to N  

            randomly order the cliques in C  



            for 1←i  to 45 

                icc ←  // backup ic  before recombining 

                falsedone ←  

                for each vertex iij cv ∈   

                    if ( ()rand>ρ ) 

                        }{ ijii vcc ∪← // ic  is the collection of removed vertices 

                        }{\ ijii vcc ← //remove ijv  from ic   

                )('
ii cgrecombininc ← //return the new clique after recombining 

                for 1←k  to K  

                    )( ''
ii cmatchRoomc ← //return the matched events 

                    if ( )()( '
ii cscs ≤  or )()( '

ii cwcw ≤  or )()( '
ii cdcd ≤ ) 

                        '
ii cc ←  

                        iccVV \∪← //update the vertices in V  

                        truedone ←  

                        Break 

                 if ( falsedone = ) 

                      cci ← // we do not accept the new clique 

        αρρ *←  

The third step: Perturbing 

    initialize L  and M  

if ( V is not empty) 

    for 1←l  to L  

               randomly select M  pairs of cliques and set them unvisited 

               select a pair of unvisited clique ( ic , jc ) 

               ←v randomly select a vertex from ic  

               )(\ vNcv j←  

               }{\' vvcc ii ∪←  

               vvcc jj \}{' ∪←  

               if ( '
ic  and '

jc  are legal) 

                    '
ii cc ←  

                    '
jj cc ←  

                    for each vertex Vv∈  

                       if ( }{vci ∪  is legal) 

                          }{vcc ii ∪←  

                          }{\ vVV ←                                     

                       else if ( }{vc j ∪  is legal) 



                           }{vcc jj ∪←  

                           }{\ vVV ←  

schedule the remaining events into artificial timeslots 'T  

if (there is still time) run the Recombining and the Perturbing alternately for 100 times 

return the number of events scheduled in 'T  

 

4. Experimental results 

Our algorithm was tested on the 60 test instances generated by Lewis et al. in [1], which can 

be downloaded from http://www.dcs.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm. It 

is already known that there is at least one feasible solution for each instance. The number of 

timeslots is fixed to be 45 and these instances are classified into three categories: small, medium 

and big. As in [1], the limited time for each run is set to be 30, 200, and 800 seconds for each 

small, medium and big instance respectively. More information about this benchmark can be 

obtained in [1]. 

 We successfully constructed feasible solutions for 6 instances only after the first step. This 

showed that our algorithm’s initializing step was not as effective when compared with the 

sequential technique in [26]. However, our initializing step ran in less time and created a good 

beginning for further improvement steps.  

There are six parameters in our algorithm: α , ρ , N , K , L  and M . They have a 

great impact on the performance of our algorithm. In order to find a good combination of values 

for α  and ρ , we first fixed 100=N , 1=K , 1000=L  and 16* EEM = . The initial 

value of α  and ρ  were set to be 0.8 and 0.3. At first, we fixed α  but increased ρ  by 0.05 

for each test. From the tests, we found that the algorithm performed quite well when ρ  was 

around 0.5. For tuning α , we also fixed ρ  to be 0.6 while increasing α  by 0.05 for each test. 

The values of α  and ρ  were finally fixed according to the average performance of the tests 

over all the instances. After we fixed α  and ρ , N , K , L  and M were carefully tuned 

according to the running time and the performance. For the recombining process, we first set 

100=N  and 1=K , and then for each test, we increased N  by 100 and increased K  by 1 

alternately. The running time of test for each combination value of N  and K  was set to be half 

of the time limit. The combination of values for N  and K  for each instance was recorded, and 

the best combination was finally selected according to their average result over all the instances. 

For the perturbing process, L  and M  were also tuned in a similar way. But L  was set at 

1000 and M  was set at 16* EE  at first, and then we increased L  by 1000 and increased 

M  by 16* EE  alternately. However, the running time for each test was half of the 

recombining process, namely, one quarter of the time limit. In our experiments, we used the same 

combination of values for α , ρ , N , K , L  and M , which had the best average results 



over all the instances. 

In the process of recombining, the deterioration rate α  was fixed to be 0.95 and the 

probability ρ  was set to be 0.6 initially. The number of cycles N  for each inner loop and the 

number of times K  for maximum matching on a clique had great impact on the performance of 

the algorithm. They were carefully tuned and were finally set as 300=N  and 5=K . The 

greater N  and K  were, the better results we obtained, but of course, the more CPU time was 

used. For the perturbing step, the loops of perturbing L  was set as 410  and the number of pairs 

of cliques M  was set at 4* EE , that is, about half of the total pairs of cliques have a 

chance to be perturbed. For small and medium instances, most of the unscheduled events could be 

inserted into timeslots after perturbing. But for big instances, we still needed to try to run the 

recombining process and the perturbing process alternately for 100 times. 

 The proposed algorithm was implemented in C++, and was run on a Pentium IV, 2.60 GHz 

and 512 Mb of RAM under Windows XP. We carried out 20 runs of our program for each of the 

60 instances (i.e. comprising 20 small, 20 medium and 20 big instances). The best and average 

results were recorded and compared with HAS [26] and Lewis I-III [1]. They are shown in Table 1, 

Table 2 and Table 3. The column “Min” shows the minimal number of unscheduled events (the 

events scheduled into artificial timeslots) during the 20 runs of the algorithm. In the brackets of 

the same column, we give the number of times that the best solution was found over the 20 runs. 

The column “Ave” denotes the average number of unscheduled events over 20 runs. In the column 

“CPU(s)” we present the average CPU time (in seconds), but in HSA [26], they provided the 

minimal CPU time needed to find the best solution, and value 0 means that the constructive 

heuristic could find a feasible solution using just 45 timeslots after initialization. The last row of 

each table calculates the number of instances we succeeded in constructing feasible timetables. 

The columns Lewis I, Lewis II and Lewis III contain the best results from 20 runs of the grouping 

genetic algorithm (GGA)[1] as given in [35]. 

  

Table 1: Small Instances 

Our algorithm HSA Instance 

name Min Ave CPU(s) Min Ave CPU(s) 

Lewis 

I 

Lewis 

II 

Lewis 

III 

S1 0(20) 0 0.05 0(20) 0 0 0 0 0 

S2 0(20) 0 0.02 0(20) 0 0 0 0 0 

S3 0(20) 0 1.25 0(20) 0 9 0 0 0 

S4 0(20) 0 0.05 0(20) 0 0 0 0 0 

S5 0(20) 0 4.60 0(20) 0 5 5 0 0 

S6 0(20) 0 0.02 0(20) 0 0 0 0 0 

S7 0(16) 0.2 0.02 0(20) 0 0 0 0 0 



S8 0(14) 0.3 0.05 0(1) 1.9 79 12 4 0 

S9 0(17) 0.15 0.02 0(2) 3.85 84 4 0 0 

S10 0(20) 0 1.25 0(20) 0 15 0 0 0 

S11 0(20) 0 0.02 0(20) 0 0 0 0 0 

S12 0(20) 0 2.75 0(20) 0 0 0 0 0 

S13 0(20) 0 1.00 0(9) 1 15 0 0 0 

S14 0(7) 0.7 70.55 3(1) 5.95 136 17 3 0 

S15 0(20) 0 0.55 0(20) 0 0 0 0 0 

S16 0(20) 0 0.35 0(20) 0 13 0 0 0 

S17 0(20) 0 2.00 0(20) 0 13 0 0 0 

S18 0(6) 0.7 51.65 0(11) 0.45 36 3 3 0 

S19 0(20) 0 1.00 0(11) 1.2 25 3 3 0 

S20 0(17) 0.15 70.85 0(20) 0 0 0 0 0 

Total 20   19   14 18 20 

The timetabling problem is an instance of a larger family of grouping problems [1], [36], where a 

set of items S  required to be partitioned into a collection of mutually disjoint groups is , such 

that:  

Ssi =∪  and φ=∩ ji ss  for ji ≠  

Falkenauer [36] pointed out that when the traditional genetic algorithm (GA) is applied to such 

grouping problems, there may be high redundancy in representations and operators, so they 

proposed a variation of GA named grouping genetic algorithm (GGA) and first applied it to graph 

coloring problems. Recently, an improved GGA (Lewis I, Lewis II and Lewis III) proposed by 

Lewis et al. [1] was also successfully applied to the timetabling problem. In Lewis’s algorithm, 

each timetable is coded as a two dimensional matrix where rows represent rooms and columns 

represent timeslots. The structure of the algorithm is similar to GA, but they designed a special 

genetic cross operator. This operator comprises four stages: point selection, injection, removal of 

duplicates using adaptation, and reconstruction. They also employed a new method for measuring 

population diversities and distances between individuals with the grouping representation. These 

mechanisms are well designed according to the features of the grouping problems and it was 

proved to be efficient in constructing feasible solutions for UCTP.  

  

Table 2: Medium Instances 

Our algorithm HSA Instance 

name Min Ave CPU(s) Min Ave CPU(s) 

Lewis 

I 

Lewis 

II 

Lewis 

III 

M1 0(20) 0 5.85 0(20) 0 0 0 0 0 

M2 0(20) 0 1.5 0(20) 0 0 0 0 0 



M3 0(20) 0 5.05 0(20) 0 8 0 0 0 

M4 0(20) 0 2.05 0(20) 0 3 0 0 0 

M5 0(20) 0 59.75 0(20) 0 85 8 0 0 

M6 0(20) 0 7.95 0(20) 0 20 15 0 0 

M7 0(1) 3.55 134.45 1(1) 4.15 440 41 34 14 

M8 0(20) 0 11.35 0(20) 0 12 21 9 0 

M9 0(1) 2.15 123.2 0(1) 4.9 269 30 17 2 

M10 0(20) 0 0.35 0(20) 0 0 0 0 0 

M11 0(20) 0 3.4 0(20) 0 25 12 0 0 

M12 0(20) 0 6.5 0(20) 0 54 0 0 0 

M13 0(20) 0 9.2 0(12) 0.5 172 23 3 0 

M14 0(20) 0 10.9 0(20) 0 59 0 0 0 

M15 0(20) 0 7 0(19) 0.05 72 10 0 0 

M16 0(15) 0.3 21.65 1(2) 5.15 733 50 30 1 

M17 0(20) 0 1.8 1(20) 0 239 21 0 0 

M18 0(20) 0 8.65 0(2) 6.05 429 15 0 0 

M19 0(14) 0.3 16.45 0(3) 5.45 511 51 0 0 

M20 0(13) 0.65 24.55 2(1) 10.6 457 15 0 3 

Total 20   19   7 15 16 

HSA [26] initializes the timetable by using two graph coloring heuristic methods: Largest Degree 

first (LD) and Least Saturation Degree first (LSD). When there are still events that cannot be 

scheduled within 45 timeslots after initialization, it opens additional timeslots, called artificial 

timeslots, to hold the remaining events. However, scheduling the events into the artificial timeslots 

will be punished by a objective function )(sf , which calculates the number of events assigned in 

the artificial timeslots. In the improving phase, HSA tries to reduce )(sf  by combining SA and 

three neighborhood operations: change the assignment of one event, swap two events, and perform 

the modified kempe chain move. This kempe chain move operates between two randomly selected 

timeslots. The events between both timeslots are connected if they conflict or they are scheduled 

in the same room. Before this move is performed, an event is randomly selected, a chain is 

triggered from this event to its connected events, and this chain is triggered alternately between 

these two timeslots. From the performance of HSA, one can conclude that this operation works 

quite well when it is combined with SA. 

Table 3: Big Instances 

Our algorithm HSA Instance 

name Min Ave CPU(s) Min Ave CPU(s) 

Lewis 

I 

Lewis 

II 

Lewis 

III 

B1 0(20) 0 18.4 0(20) 0 0 0 0 0 



B2 0(20) 0 94.2 0(20) 0 283 0 0 0 

B3 0(20) 0 55.4 0(20) 0 447 0 0 0 

B4 0(20) 0 133.5 0(20) 0 406 32 30 8 

B5 1(2) 3.2 353.1 0(6) 1.1 743 31 24 30 

B6 10(1) 15.4 319.25 5(1) 8.45 893 90 71 77 

B7 39(2) 46.65 383.85 47(1) 58.3 966 150 145 150 

B8 0(20) 0 136.75 0(20) 0 210 35 30 5 

B9 0(20) 0 122.6 0(19) 0.05 419 26 18 3 

B10 0(3) 1.95 319.6 0(6) 1.25 660 36 32 24 

B11 0(2) 2.35 271.7 0(14) 0.35 444 43 37 22 

B12 0(20) 0 54.55 0(20) 0 240 4 0 0 

B13 0(20) 0 84.15 0(20) 0 274 23 10 0 

B14 0(20) 0 67.8 0(20) 0 271 8 0 0 

B15 0(20) 0 83.95 0(20) 0 255 120 98 0 

B16 0(20) 0 46.85 0(2) 2 755 120 100 19 

B17 0(6) 2.05 554.35 76(1) 89.9 998 260 243 163 

B18 0(4) 1.7 437.95 53(1) 62.6 764 199 173 164 

B19 40(1) 53.2 410.45 109(1) 127 998 262 253 232 

B20 9(2) 14.05 370.5 40(1) 46.7 827 186 165 149 

Total 15   14   3 5 7 

For the big instances, we obtained better results for almost all instances in comparison with 

Lewis I, Lewis II and Lewis III. Compared with HSA, our algorithm obtained improved results 

(shown in bold font) for about half of the big instances. But for some small instances, such as S18 

and S20, our algorithm returned fewer feasible solutions in 20 runs. For B6, our algorithm 

dropped into local optima and returned a worse solution in the end. Our algorithm also failed to 

construct a feasible timetable for B5 while HSA was able to return one. However, it is worth 

mentioning that, for some of the hardest instances, such as B17 and B18, our algorithm was still 

able to construct feasible solutions, whereas HSA was not able to do so. For B16, B19 and B20, 

our algorithm performed better than HSA. This shows the advantage of our algorithm in solving 

big instances. For other instances, our algorithm also performed no worse than HSA. On the whole, 

our algorithm successfully constructed feasible timetables for almost all instances in short time. 

We conclude that our algorithm is robust and efficient in constructing feasible solutions for 

timetabling problems. 

 

5. Conclusion and future work 

Our algorithm has been successfully applied to construct feasible solutions for difficult 



timetabling problems. The computational results demonstrate our algorithm’s high efficiency, and 

also proved that it could compete with other effective algorithms. The recombining process 

introduced in our algorithm can be easily extended and applied to solve more timetabling 

problems. 
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