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ABSTRACT 
This paper presents a hybrid simulated annealing algorithm for 
container loading problem with boxes of different sizes and single 
container for loading. A basic heuristic algorithm is introduced to 
generate feasible solution from a special structure called packing 
sequence. The hybrid algorithm uses basic heuristic to encode 
feasible packing solution as packing sequence, and searches in the 
encoding space to find an approximated optimal solution. The 
computational experiments on 700 weakly heterogeneous 
benchmark show that our algorithm outperforms all previous 
methods in average. 

Categories and Subject Descriptors 
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solving, Control 
Methods, and Search – Heuristic methods 

General Terms 
Algorithms 

Keywords 
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1. INTRODUCTION 
The problem addressed in this paper is a variant of packing 
problem. Packing problem has numerous applications in the 
cutting and packing industry. A good algorithm for packing 
problem is very important to save natural resource and minimize 
the trim loss.  

Different optimal objective and loading constraints in practice 
lead to different variants of packing problems. An overview of the 
various types of packing and related cutting problem is described 
by Dyckhoff and Finke [5].  

In this paper, three dimensional container loading problem (3D-
CLP) is considered. It can be characterized as follows: 
Given a rectangular container and a set of rectangular packing 
boxes, the objective is to determine a feasible arrangement of a 
subset of boxes which maximizes the volume of stowed boxes and 
meets the given loading constraints.  

An arrangement is feasible if the following conditions are 
satisfied: 

 Each stowed box is placed completely within the container. 
 Each stowed box does not overlap another stowed box. 
 Each stowed box is placed parallel to the container. 

In practice, there are many constraints to meet in specific 
container loading problem. Here, only the following two 
constraints are included in the problem formulation.  

(C1) Orientation constraint 
Orientation constraint means that only some specific sides of a 
box can be used as height. 3D-CLP without C1 can be converted 
to 3D-CLP with C1 by allowing every side to be used as height.  
Hence, we always consider 3D-CLP with C1. 

 (C2) Stability constraint (Optional) 
Stability constraint means that the stowed box must be fully 
supported by other stowed boxes or the bottom of the container. 
In other words, it forbids stowed boxes overhanging. Some 
applications in transportation industry require this constraint. In 
this paper, the algorithms for 3D-CLP with C2 and without C2 are 
both developed. 

All boxes coincided in three dimensions and orientation 
constraints are considered to be the same type. A homogeneous 
box set is a set of boxes of one type. A weakly heterogeneous box 
set has few box types and many boxes per type. A strongly 
heterogeneous box set has a lot of box types and few boxes per 
type. Weakly heterogeneous box set is assumed in this paper. 

In the recent years, many methods for the 3D-CLP have been 
developed. It is well known that the container loading problem is 
NP-hard (cf. [13]). Hence, the methods developed are heuristic 
approaches. Problem specific heuristics are proposed by Loh and 
Nee [9], Ngoi et al. [11], Bischoff et al. [2] and Bischoff and 
Ratcliff [1]. Intelligent graph search algorithms are introduced by 
Morabito and Arenales [10] and Pisinger [12], while Gehring and 
Bortfeldt [6] and Bortfeldt and Gehring [4] present genetic 
algorithms (GAs). Tabu search algorithms (TSAs) are given by 
Sixt [14] and Bortfeldt and Gehring [3]. Parallel tabu search 
algorithm is presented by Gehring and Bortfeldt [7], Bortfeld and 
Gehring [16]. Parallel GA algorithm is proposed by Gehring and 
Bortfeldt [8]. Defu Zhang [17,18,19] also shows some interesting 
results by combining basic heuristic and simulated annealing 
algorithm.  
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2. BASIC HEURISTICS 
2.1 The overall heuristics algorithm 
The basic heuristic, which is an enhancement of the heuristics 
proposed by Bortfeld and Gehring [16], generates a feasible 
solution according to a given index vector named packing 
sequence. This heuristics algorithm is performed by loading a 
series so-called packing spaces in several phases. A packing space 
is an empty rectangular space ready to be loaded. While loading a 
packing space, only pre-defined structure called local 
arrangements, which will be mention later, of boxes are 
considered. The heuristics performs as follow: it keeps a list of 
available packing spaces and loads one packing space in each 
packing phase; at first, the container is the only packing space; in 
k-th phase, all possible local arrangements for the packing space 
are generated and sorted by certain criteria; then local 
arrangement specified by k-th element of packing sequence is 
chosen, boxes it contained are added to solution and residual 
packing spaces it generated are included as new available packing 
spaces which will be loaded latterly; when a phase ends, it pick 
another packing space in the available list to continue until all 
packing space are loaded. 

2.2 Local arrangement 
While generating local arrangement, only block structure is 
considered. A block is formed by boxes of the same type with 
same spatial orientation. Moreover, a block is a rectangular 
parallelepiped, and there is no space between boxes within it. A 
local arrangement contains one block, and the block is always 
placed in the left-rear-bottom corner of the packing space 
paralleled to the container. 

Given a packing space, a box type and its orientation, a greedy 
filling algorithm is adopted to generating blocks. The greedy 
algorithm is based on the order of three dimensions; it fills the 
boxes as many as possible in the first dimension; then do the same 
thing in the second dimension; finally in the third. There are at 
most six possible filling methods for every box type. Figure 1 
gives a boxes filling example with dimensions order <x, y, z>. 

It is noted that in the whole process, if there are no enough boxes, 
the filling process will stop immediately to make sure the used 
boxes do not exceed the limitation of problem specification. 

After generation of the block, the unused part of the packing 
space must be divided into residual spaces to form a local 
arrangement. There exist many variant dividing methods; we only 
consider six simple dividing methods. First two dividing methods 
are adopted in 3D-CLP with C2, which are illustrated in Figure 2. 
These methods ensure that every generated residual packing space 
is supported by other stowed boxes or by the bottom of the 
container. The additional four dividing methods are adopted in 
3D-CLP without C2, which are illustrated in Figure 3.  

For a given packing space, all possible local arrangements will be 
generated. In this case, we need some criteria to sort them. We 
consider the local arrangement have bigger filled volume is better, 
and if tie the local arrangement have bigger residual volume is 
better. 

 
Figure 1. Example of boxes filling. 

 
Figure 2. Stable dividing methods. 

 
Figure 3. Additional dividing methods. 

3. HYBRID ALGORITHM 
As mentioned in last section, by using the basic heuristics, we can 
produce a feasible packing solution from a packing sequence. K-
th element in packing sequence corresponds to local arrangement 
selection in k-th packing phase. Hence, a packing sequence is an 
encoding of a feasible packing solution, and searching in the 
space of packing sequences approximately corresponds to 
searching in the space of feasible packing solutions. 

3.1 The neighborhood structure 
The hybrid simulated annealing algorithm is carried out in the 
space of packing sequence. The neighborhood N(ps) of a packing 
sequence ps include all packing sequence ps’, for which the 
following applies: ps and ps’ has same length but differs exactly 
one position j, namely ps[j] ≠  ps’[j], and for 0 ≤  i < len(ps),  i 

≠  j, we have ps[i] = ps’[i]. 

3.2 Complete hybrid algorithm 
After constructing basic heuristics and neighborhood structure, we 
present the complete hybrid algorithm in Figure 4. In the 
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initialization, we select a packing sequence randomly; then we 
adopt simulated annealing algorithm to improve the utilization 
rate of solution found; controlling variables of this algorithm such 
as start and end temperature, annealing schedule, Markov chain 
length, etc. are got from input to increase the flexibility. 

 

3.3 Advance improvement 
The setting of controlling variables may affect the performance 
dramatically. Computational experiments show that different 
settings of these variables perform better in certain cases. An 
improvement of this algorithm is that we can run this algorithm 
with different variable settings and select the best solution. 

4. COMPUTATIONAL RESULTS 
4.1 Applied test problems 
The tests are based on well-known benchmark from Bischoff and 
Ratchliff [1]. The problems data can be found in OR-Library [15]. 
These problems are subdivided into seven test cases. The 
problems in the same test case have the same number of box 
types.  

Orientation constraint (C1) is specified in the test problems. The 
hybrid algorithms with and without stability constraint (C2) are 
both tested.  

4.2 Comparative tests 
The algorithms were implemented in C++ and tests were run on 
an Intel Core Duo 2.0 GHz processor.  

For the test problems from Bischoff and Ratcliff [1], results are 
available for the heuristics from Bischoff et al. [2], Bischoff and 
Ratcliff [1] and for the GAs from Gehring and Bortfeldt [6] and 
Bortfeldt and Gehring [4] and for sequential TSA and parallel 
TSA from Bortfeld and Gehring [16]. These results are 
summarized in Table 1. The results of the hybrid algorithms with 
C2 and without C2 are showed in Table 2 for comparison.   

The results of comparative tests can be summarized as follows: 

 The results reported by Bischoff and Ratcliff [1], Gehring 
and Bortfeldt [6] and Bortfeldt and Gehring [4] are based on 
full support of stowed boxes, namely with C2. The result 
reported by Bortfeld and Gehring [16] (both sequential and 
parellell) are based on 55% support of stowed boxes, which 
is a relaxed form of C2. For tests on full support of stowed 
boxes, Bortfeld and Gehring [16] only report the average 
volume utilization: 91.6% (sequential) and 92.2% (parallel). 

 The hybrid algorithm for 3D-CLP with C2 achieves 92.83% 
volume utilization in average. This outperforms all previous 
works, even those algorithms which didn’t consider C2. 

 Along with the number of box types increasing, the running 
time of the algorithm increases monotonously. The reason is 
that the number of the possible local arrangements increases 
following the increase of box types, so does the running 
time. 

 As the number of box types increases, the result utilization 
decreases almost monotonously. This is because the 
searching space expands quickly as the number of possible 
local arrangements increases in each packing phase. 
Therefore, it’s harder to approximate optimal solution. 

 The hybrid algorithm without C2 allows more possible local 
arrangements in each packing phase than that with C2. 
Hence, the former run longer but produce better solutions. 
Comparative tests show the former produce 0.67% better 
volume utilization rate than the latter in average. 

5. CONCLUSION 
In this paper, a hybrid simulated annealing algorithm for three 
dimensional container loading problem is proposed. A basic 
heuristic algorithm is introduced to encode feasible packing 
solution, and then the simulated annealing algorithm is applied to 
search in the encoding space. The comparative tests show that our 
algorithm outperforms all previous reported works. When 
relaxing the stability constraint, our algorithm achieves even 
better results in the standard test problems. The results prove that 
the neighborhood searching technique combined with a well-
designed basic heuristic algorithm is a good way to solve 
container loading problem. 

Table 1. The results of previous algorithms 
 

Case 

Bischoff 
et al. [2] 

Bischoff, 
Ratcliff 

[1] 

Gehring, 
Bortfeldt 

[6] 

Bortfeldt, 
Gehring 

[4] 

Bortfeld, 
Gehring 

[16] 

Bortfeld, 
Gehring 

[16] 

(parallel) 

BR1 81.76 83.79 85.80 87.81 93.23 93.52 
BR2 81.70 84.44 87.26 89.40 93.27 93.77 
BR3 82.98 83.94 88.10 90.48 92.86 93.58 
BR4 82.60 83.71 88.04 90.63 92.40 93.05 
BR5 82.76 83.80 87.86 90.73 91.61 92.34 
BR6 81.50 82.44 87.85 92.72 90.86 91.72 
BR7 80.51 82.01 87.68 90.65 89.65 90.55 
Avg 82.0 83.5 87.5 90.1 92.0 92.7 

 

Initialize 
Generate packing sequence ps randomly. 
Calculate corresponding packing solution sln.  
best := sln, t := start temperature 
Simulated annealing algorithm 
while t > end temperature do 

for i from 1 to L do 
Select ps’ in N(ps) randomly. 
Calculate the solution sln’ from ps’ by heuristics.  
if sln’.v > sln.v then 

sln := sln’, ps := ps’. 
else if random[0, 1) < exp((sln’.v – sln.v)/t) then 

sln := sln’, ps := ps’. 
if sln.v > best.v then 

best := sln. 
  Decrease t according to the annealing schedule 

Figure 4. The complete hybrid algorithm. 
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Table 2. The results of hybrid algorithms 

With C2 Without C2 
Case Box 

types Time (s) Rate 
(%) Time (s) Rate 

(%) 
BR1 3 15.35 92.86 37.08 93.54 
BR2 5 41.98 93.58 62.57 94.15 
BR3 8 78.13 93.55 109.47 94.06 
BR4 10 106.40 93.17 141.53 93.87 
BR5 12 132.24 92.77 178.41 93.50 
BR6 15 175.72 92.44 228.38 93.04 
BR7 20 245.69 91.46 346.41 92.32 
Avg 10 113.64 92.83 157.70 93.50 
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