152 research outputs found

    Effects of mutation and some environmental factors on the physiology and pathogenicity of selected bacteria

    Get PDF
    Studies with mutants of Staphylococcus aureus lacking some virulence factors suggest that the presence of deoxyribonuclease correlates with mouse pathogenicity of S. aureus, while the ability to ferment mannitol or the possession of coagulases are not required for virulence. Autotrophy investigations on mycobacteria demonstrate a complete correlation between the ability to grow with hydrogen and the species of scotochromogenic mycobacterium tested. All tested strains of M. gordonae, a saprophyte, could grow autotrophically while none of the tested strains of M. scrofulaceum, a clinically important species, possessed this ability. A series of heat tolerant mutants of Pseudomonas fluorescences were obtained which can grow at temperatures up to 54 C, in contrast to a maximum growth temperature of 37 C for the wild type

    The Colorado Ultraviolet Transit Experiment: The First Dedicated Ultraviolet Exoplanet Mission

    Get PDF
    The past few years of space mission development have seen an increase in the use of small satellites as platforms for dedicated astrophysical research; they offer unique capabilities for time-domain science and complementary advantages over large shared resource facilities like the Hubble Space Telescope, including: (1) low cost and relatively quick development timelines; (2) observing strategies dedicated to niche but important science questions; and (3) ample opportunity for students and early career scientists and engineers to be involved on the front lines of space mission development. The Colorado Ultraviolet Transit Experiment (CUTE) is a NASA-supported 6U CubeSat assembled and tested at the Laboratory for Atmospheric and Space Physics within the University of Colorado Boulder. It is designed to observe the evolving atmospheres on short-period exoplanets with a dedicated science mission unachievable by current and planned future space missions. CUTE operates with a bandpass of ∌2487 – 3376 Å and an average spectral resolution element of 3.9 Å. The mission launched in September of 2021 and is in the process of conducting transit spectroscopy of approximately one dozen short-period exoplanets during its primary mission. This proceeding describes the overall CUTE satellite program, including the mission development integration and testing, anticipated science return, and lessons learned to improve both universities’ and commercial companies’ ability to create and collaborate on successful academically and research-focused small satellite missions. While CubeSats are becoming increasingly accessible and utilized for scientific research and student education, CUTE serves as an example that university small satellite programs have specific needs to successfully and efficiently achieve both scientific and educational elements. These include (1) a minimum threshold of commercial-off-the-shelf product quality, performance, and support; (2) specific and timely guidelines from launch service providers regarding launch readiness and delivery requirements; (3) and sufficient funding to provide multi-disciplinary engineering and program management support across the developmental life-cycle of the mission

    Renewable energy resource assessment

    Full text link
    © The Author(s) 2019. Literature overview of published global and regional renewable energy potential estimates. This section provides definitions for different types of RE potentials and introduces a new category, the economic renewable energy potential in space constrained environments. The potential for utility scale solar and onshore wind in square kilometre and maximum possible installed capacity (in GW) are provided for 75 different regions. The results set the upper limits for the deployment of solar- and wind technologies for the development of the 2.0 °C and 1.5 °C energy pathways

    Natural Products Chemistry and Taxonomy of the Marine Cyanobacterium Blennothrix cantharidosmum

    Get PDF
    A Papua New Guinea field collection of the marine cyanobacterium Blennothrix cantharidosmum was investigated for its cytotoxic constituents. Bioassay-guided isolation defined the cytotoxic components as the known compounds lyngbyastatins 1 and 3. However, six new acyl proline derivatives, tumonoic acids D−I, plus the known tumonoic acid A were also isolated. Their planar structures were defined from NMR and MS data, while their stereostructures followed from a series of chiral chromatographies, degradation sequences, and synthetic approaches. The new compounds were tested in an array of assays, but showed only modest antimalarial and inhibition of quorum sensing activities. Nevertheless, these are the first natural products to be reported from this genus, and this inspired a detailed morphologic and 16S rDNA-based phylogenetic analysis of the producing organism

    The pathophysiological function of peroxisome proliferator-activated receptor-Îł in lung-related diseases

    Get PDF
    Research into respiratory diseases has reached a critical stage and the introduction of novel therapies is essential in combating these debilitating conditions. With the discovery of the peroxisome proliferator-activated receptor and its involvement in inflammatory responses of cardiovascular disease and diabetes, attention has turned to lung diseases and whether knowledge of this receptor can be applied to therapy of the human airways. In this article, we explore the prospect of peroxisome proliferator-activated receptor-Îł as a marker and treatment focal point of lung diseases such as asthma, chronic obstructive pulmonary disorder, lung cancer and cystic fibrosis. It is anticipated that peroxisome proliferator-activated receptor-Îł ligands will provide not only useful mechanistic pathway information but also a possible new wave of therapies for sufferers of chronic respiratory diseases

    Stem cell‐derived enteroid cultures as a tool for dissecting host‐parasite interactions in the small intestinal epithelium.

    Get PDF
    Toxoplasma gondii and Cryptosporidium spp. can cause devastating pathological effects in humans and livestock, and in particular to young or immunocompromised individuals. The current treatment plans for these enteric parasites are limited due to long drug courses, severe side effects, or simply a lack of efficacy. The study of the early interactions between the parasites and the site of infection in the small intestinal epithelium has been thwarted by the lack of accessible, physiologically relevant, and species-specific models. Increasingly, 3D stem cell-derived enteroid models are being refined and developed into sophisticated models of infectious disease. In this review we shall illustrate the use of enteroids to spearhead research into enteric parasitic infections, bridging the gap between cell line cultures and in vivo experiments

    Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

    Get PDF
    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation
    • 

    corecore