10 research outputs found
Dynamical mean-field theory of spiking neuron ensembles: response to a single spike with independent noises
Dynamics of an ensemble of -unit FitzHugh-Nagumo (FN) neurons subject to
white noises has been studied by using a semi-analytical dynamical mean-field
(DMF) theory in which the original -dimensional {\it stochastic}
differential equations are replaced by 8-dimensional {\it deterministic}
differential equations expressed in terms of moments of local and global
variables. Our DMF theory, which assumes weak noises and the Gaussian
distribution of state variables, goes beyond weak couplings among constituent
neurons. By using the expression for the firing probability due to an applied
single spike, we have discussed effects of noises, synaptic couplings and the
size of the ensemble on the spike timing precision, which is shown to be
improved by increasing the size of the neuron ensemble, even when there are no
couplings among neurons. When the coupling is introduced, neurons in ensembles
respond to an input spike with a partial synchronization. DMF theory is
extended to a large cluster which can be divided into multiple sub-clusters
according to their functions. A model calculation has shown that when the noise
intensity is moderate, the spike propagation with a fairly precise timing is
possible among noisy sub-clusters with feed-forward couplings, as in the
synfire chain. Results calculated by our DMF theory are nicely compared to
those obtained by direct simulations. A comparison of DMF theory with the
conventional moment method is also discussed.Comment: 29 pages, 2 figures; augmented the text and added Appendice
Real-time fMRI neurofeedback: progress and challenges
In February of 2012, the first international conference on real time functional magnetic resonance imaging (rtfMRI) neurofeedback was held at the Swiss Federal Institute of Technology Zurich (ETHZ), Switzerland. This review summarizes progress in the field, introduces current debates, elucidates open questions, and offers viewpoints derived from the conference. The review offers perspectives on study design, scientific and clinical applications, rtfMRI learning mechanisms and future outlook