568 research outputs found
An Exploratory Study of Police Officers: Low Compassion Satisfaction and Compassion Fatigue
Background: Compassion fatigue, or the physical, mental, and emotional state experienced by professionals that assist others in distress, has been well documented in several caring professions such as nurses, firefighters, and emergency medical technicians. Until the current study, it has only rarely been examined in police samples despite their high rates of stress and suicide which is a likely result of a depletion of compassion satisfaction, or the pleasure an officer gets from relating to and helping others.
Aim: This study documents findings from an ongoing study of compassion fatigue amongst a sample of US urban police officers which suggests the possibility of a future risk for high burnout.
Conclusion: Very low levels of compassion fatigue were found in the sampled police officers in comparison to what would be expected from the general population. Where compassion fatigue was found in the sampled police, it was significantly correlated to the level of compassion satisfaction. A potential cause for concern is that the incidence of levels of reported compassion satisfaction were also low in the sample (in the bottom quartile compared to the general population). This suggests a possibility of higher numbers of burnout in the future given the role of compassion satisfaction as a buffer against compassion fatigue in policing
Recommended from our members
Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures.
It is important to improve our understanding of exposure to particulate matter (PM) in residences because of associated health risks. The HOMEChem campaign was conducted to investigate indoor chemistry in a manufactured test house during prescribed everyday activities, such as cooking, cleaning, and opening doors and windows. This paper focuses on measured size distributions of PM (0.001-20 μm), along with estimated exposures and respiratory-tract deposition. Number concentrations were highest for sub-10 nm particles during cooking using a propane-fueled stovetop. During some cooking activities, calculated PM2.5 mass concentrations (assuming a density of 1 g cm-3) exceeded 250 μg m-3, and exposure during the postcooking decay phase exceeded that of the cooking period itself. The modeled PM respiratory deposition for an adult residing in the test house kitchen for 12 h varied from 7 μg on a day with no indoor activities to 68 μg during a simulated day (including breakfast, lunch, and dinner preparation interspersed by cleaning activities) and rose to 149 μg during a simulated Thanksgiving day
Climate modulates internal wave activity in the Northern South China Sea
Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 831–838, doi:10.1002/2014GL062522.Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño–Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.This work was supported by NSF award 1220529 to Anne Cohen, by the Academia Sinica (Taiwan) through a thematic project grant to G.T.F.W. and Anne Cohen, by the Alfred P. Sloan Foundation and the WHOI Oceans and Climate Change Institute/Moltz Fellowship through awards to K.B.K., and by an NSF Graduate Research Fellowship to T.M.D.2015-08-1
Recommended from our members
Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning.
Measurements by semivolatile thermal desorption aerosol gas chromatography (SV-TAG) were used to investigate how semivolatile organic compounds (SVOCs) partition among indoor reservoirs in (1) a manufactured test house under controlled conditions (HOMEChem campaign) and (2) a single-family residence when vacant (H2 campaign). Data for phthalate diesters and siloxanes suggest that volatility-dependent partitioning processes modulate airborne SVOC concentrations through interactions with surface-laden condensed-phase reservoirs. Airborne concentrations of SVOCs with vapor pressures in the range of C13 to C23 alkanes were observed to be correlated with indoor air temperature. Observed temperature dependencies were quantitatively similar to theoretical predictions that assumed a surface-air boundary layer with equilibrium partitioning maintained at the air-surface interface. Airborne concentrations of SVOCs with vapor pressures corresponding to C25 to C31 alkanes correlated with airborne particle mass concentration. For SVOCs with higher vapor pressures, which are expected to be predominantly gaseous, correlations with particle mass concentration were weak or nonexistent. During primary particle emission events, enhanced gas-phase emissions from condensed-phase reservoirs partitioned to airborne particles, contributing substantially to organic particulate matter. An emission event related to oven-usage was inferred to deposit siloxanes in condensed-phase reservoirs throughout the house, leading to the possibility of reemission during subsequent periods with high particle loading
Validation of the remotely sensed nighttime sea surface temperature in the shallow waters at the Dongsha Atoll
© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Terrestrial, Atmospheric and Oceanic Sciences 28 (2017): 517-524, doi:10.3319/TAO.2017.03.30.01.Fine scale temperature structures, which are commonly found in the top few meters of shallow water columns, may result in deviations of the remotely sensed night-time sea surface temperatures (SST) by the MODIS-Aqua sensor (SSTsat) from the bulk sea surface temperatures (SSTbulk) that they purport to represent. The discrepancies between SSTsat and SSTbulk recorded by temperature loggers at eight stations with bottom depths of 2 - 20 m around the Dongsha Atoll (DSA) between June 2013 and May 2015 were examined. The SSTsat had an average cool bias error of -0.43 ± 0.59°C. The bias error was larger in the warmer (> 26°C) waters which were presumably more strongly stratified. The root mean square error (RMSE) between SSTsat and SSTbulk, ±0.73°C, was 25% larger than that reported in the open northern South China Sea. An operational calibration algorithm was developed to increase the accuracy in the estimation of SSTbulk from SSTsat. In addition to removing the cool bias error, this algorithm also reduced the RMSE to virtually the same level as that found in the open northern South China Sea. With the application of the algorithm, in June 2015, the average SST in the lagoon of the DSA was raised by about 0.5°C to 31.1 ± 0.4°C, and the area of lagoon with SSTbulk above 31°C, the median value of the physiological temperature threshold of reef organisms, was increased by 69% to about three quarters of the lagoon.This work was supported in part by the Key Research and Development Program of Shandong Province (grant no. 2015GSF117017) and Ocean University of China (grant no. 201513037 and 201512011) to Pan, and the Academia Sinica through grant titled “Ocean Acidification: Comparative biogeochemistry in shallow-water tropical coral reef ecosystems in a naturally acidic marine environment” to Wong
Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch
Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (&sigma;<sub>sp</sub>) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of &sigma;<sub>sp</sub> at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors <i>f</i>(RH)=&sigma;<sub>sp</sub>(RH)/&sigma;<sub>sp</sub>(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the <i>f</i>(RH) is available so far. At this site, <i>f</i>(RH=85%) varied between 1.2 and 3.3. Measured <i>f</i>(RH) agreed well with <i>f</i>(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good <i>f</i>(RH) predictions at RH&lt;85% were also obtained with a simplified model, which uses the Ångström exponent of &sigma;<sub>sp</sub>(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in &sigma;<sub>sp</sub>, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol
A framework for digital sunken relief generation based on 3D geometric models
Sunken relief is a special art form of sculpture whereby the depicted shapes are sunk into a given surface. This is traditionally created by laboriously carving materials such as stone. Sunken reliefs often utilize the engraved lines or strokes to strengthen the impressions of a 3D presence and to highlight the features which otherwise are unrevealed. In other types of reliefs, smooth surfaces and their shadows convey such information in a coherent manner. Existing methods for relief generation are focused on forming a smooth surface with a shallow depth which provides the presence of 3D figures. Such methods unfortunately do not help the art form of sunken reliefs as they omit the presence of feature lines. We propose a framework to produce sunken reliefs from a known 3D geometry, which transforms the 3D objects into three layers of input to incorporate the contour lines seamlessly with the smooth surfaces. The three input layers take the advantages of the geometric information and the visual cues to assist the relief generation. This framework alters existing techniques in line drawings and relief generation, and then combines them organically for this particular purpose
Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation
It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/&Delta;CO ratio for the ROB case increases from 20–30 μg sm<sup>&minus;3</sup> ppm<sup>&minus;1</sup> up to 60–70 μg sm<sup>&minus;3</sup> ppm<sup>&minus;1</sup> between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (<i>R</i><sup>2</sup>=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio
An Exploratory Study of Police Officers: Low Compassion Satisfaction and Compassion Fatigue
Background: Compassion fatigue, or the physical, mental, and emotional state experienced by professionals that assist others in distress, has been well documented in several caring professions such as nurses, firefighters, and emergency medical technicians. Until the current study, it has only rarely been examined in police samples despite their high rates of stress and suicide which is a likely result of a depletion of compassion satisfaction, or the pleasure an officer gets from relating to and helping others.Aim: This study documents findings from an ongoing study of compassion fatigue amongst a sample of US urban police officers which suggests the possibility of a future risk for high burnout.Conclusion: Very low levels of compassion fatigue were found in the sampled police officers in comparison to what would be expected from the general population. Where compassion fatigue was found in the sampled police, it was significantly correlated to the level of compassion satisfaction. A potential cause for concern is that the incidence of levels of reported compassion satisfaction were also low in the sample (in the bottom quartile compared to the general population). This suggests a possibility of higher numbers of burnout in the future given the role of compassion satisfaction as a buffer against compassion fatigue in policing
- …