165 research outputs found
Sources of Variation in Bourbon Whiskey Barrels: A Review
Oak barrels serve two purposes in the production of distilled spirits: storage containers and reaction vessels. It is the latter function which bestows barrel aged spirits with their unique and highly sought after flavour profiles. However, achieving consistent flavour profiles between barrels is notoriously difficult as no two barrels are comprised of the same source of oak. Source variation is due to a range of factors, beginning with the genetic and topographical background of the oak tree from which the barrel staves originate, the spatial region of the tree from which the stave was taken and continuing through each step of the barrel production process. In this review, we detail each source of variation and highlight how this variation affects the reactants present in the barrel staves. The effect of pyrolysis on biomass is explored and how this knowledge relates to barrels that undergo the practices of toasting and charring is discussed. We also detail the significance of variation in the availability of reactants during the maturation process. The goal of writing this review is to identify areas of needed research, stimulate research and encourage investigation into the possibility of creating barrels with more consistent properties
Optimizing the Use of a Liquid Handling Robot to Conduct a High Throughput Forward Chemical Genetics Screen of \u3cem\u3eArabidopsis thaliana\u3c/em\u3e
Chemical genetics is increasingly being employed to decode traits in plants that may be recalcitrant to traditional genetics due to gene redundancy or lethality. However, the probability of a synthetic small molecule being bioactive is low; therefore, thousands of molecules must be tested in order to find those of interest. Liquid handling robotics systems are designed to handle large numbers of samples, increasing the speed with which a chemical library can be screened in addition to minimizing/standardizing error. To achieve a high-throughput forward chemical genetics screen of a library of 50,000 small molecules on Arabidopsis thaliana (Arabidopsis), protocols using a bench-top multichannel liquid handling robot were developed that require minimal technician involvement. With these protocols, 3,271 small molecules were discovered that caused visible phenotypic alterations. 1,563 compounds induced short roots, 1,148 compounds altered coloration, 383 compounds caused root hair and other, non-categorized, alterations, and 177 compounds inhibited germination
Positioning of the SCRAMBLED Receptor Requires UDP-Glc:sterol Glucosyltransferase 80B1 in \u3cem\u3eArabidopsis\u3c/em\u3e Roots
The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane cell fate regulator, SCRAMBLED (SCM), is mislocalized in ugt80B1 mutants, underscoring the aberrant root epidermal cell patterning. Live imaging of roots indicates that SCM:GFP is localized to the cytoplasm in a non cell type dependent manner instead of the hair (H) cell plasma membrane in these mutants. In addition, we provide evidence for the localization of the UGT80B1 enzyme in the plasma membrane. These data lend further support to the notion that deficiencies in specific SGs are sufficient to disrupt normal cell function and point to a possible role for SGs in cargo transport and/or protein targeting to the plasma membrane
Liberation of Recalcitrant Cell Wall Sugars From Oak Barrels Into Bourbon Whiskey During Aging
Oak barrels have been used by humans for thousands of years to store and transport valuable materials. Early settlers of the United States in Kentucky began charring the interior of new white oak barrels prior to aging distillate to create the distinctively flavored spirit we know as bourbon whiskey. Despite the unique flavor and cultural significance of America\u27s Spirit , little is known about the wood-distillate interaction that shapes bourbon whiskey. Here, we employed an inverse method to measure the loss of specific wood polysaccharides in the oak cask during aging for up to ten years. We found that the structural cell wall wood biopolymer, cellulose, was partially decrystallized by the charring process. This pyrolytic fracturing and subsequent exposure to the distillate was accompanied by a steady loss of sugars from the cellulose and hemicellulose fractions of the oak cask. Distinct layers of structural degradation and product release from within the barrel stave are formed over time as the distillate expands into and contracts from the barrel staves. This complex, wood-sugar release process is likely associated with the time-dependent generation of the unique palate of bourbon whiskey
Anomalously large oxygen-ordering contribution to the thermal expansion of untwinned YBa2Cu3O6.95 single crystals: a glass-like transition near room temperature
We present high-resolution capacitance dilatometry studies from 5 - 500 K of
untwinned YBa2Cu3Ox (Y123) single crystals for x ~ 6.95 and x = 7.0. Large
contributions to the thermal expansivities due to O-ordering are found for x ~
6.95, which disappear below a kinetic glass-like transition near room
temperature. The kinetics at this glass transition is governed by an energy
barrier of 0.98 +- 0.07 eV, in very good agreement with other O-ordering
studies. Using thermodynamic arguments, we show that O-ordering in the Y123
system is particularly sensitive to uniaxial pressure (stress) along the chain
axis and that the lack of well-ordered chains in Nd123 and La123 is most likely
a consequence of a chemical-pressure effect.Comment: 4 pages, 3 figures, submitted to PR
Structural Probe of a Glass Forming Liquid: Generalized Compressibility
We introduce a new quantity to probe the glass transition. This quantity is a
linear generalized compressibility which depends solely on the positions of the
particles. We have performed a molecular dynamics simulation on a glass forming
liquid consisting of a two component mixture of soft spheres in three
dimensions. As the temperature is lowered (or as the density is increased), the
generalized compressibility drops sharply at the glass transition, with the
drop becoming more and more abrupt as the measurement time increases. At our
longest measurement times, the drop occurs approximately at the mode coupling
temperature . The drop in the linear generalized compressibility occurs at
the same temperature as the peak in the specific heat. By examining the
inherent structure energy as a function of temperature, we find that our
results are consistent with the kinetic view of the glass transition in which
the system falls out of equilibrium. We find no size dependence and no evidence
for a second order phase transition though this does not exclude the
possibility of a phase transition below the observed glass transition
temperature. We discuss the relation between the linear generalized
compressibility and the ordinary isothermal compressibility as well as the
static structure factor.Comment: 18 pages, Latex, 26 encapsulated postscript figures, revised paper is
shorter, to appear in Phys. Rev.
Prospecting for energy-rich renewable raw materials: agave leaf case study
Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like-rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.Kendall R. Corbin, Caitlin S. Byrt, Stefan Bauer, Seth DeBolt, Don Chambers, Joseph A. M. Holtum, Ghazwan Karem, Marilyn Henderson, Jelle Lahnstein, Cherie T. Beahan, Antony Bacic, Geoffrey B. Fincher, Natalie S. Betts, Rachel A. Burto
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes. This 15-fold increase in genus-level sampling relative to comparable nuclear studies provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology
Background
Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed.
Results
The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development.
Conclusions
The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability
- …