1,698 research outputs found

    Spinning test particles and clock effect in Kerr spacetime

    Full text link
    We study the motion of spinning test particles in Kerr spacetime using the Mathisson-Papapetrou equations; we impose different supplementary conditions among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze their physical implications in order to decide which is the most natural to use. We find that if the particle's center of mass world line, namely the one chosen for the multipole reduction, is a spatially circular orbit (sustained by the tidal forces due to the spin) then the generalized momentum PP of the test particle is also tangent to a spatially circular orbit intersecting the center of mass line at a point. There exists one such orbit for each point of the center of mass line where they intersect; although fictitious, these orbits are essential to define the properties of the spinning particle along its physical motion. In the small spin limit, the particle's orbit is almost a geodesic and the difference of its angular velocity with respect to the geodesic value can be of arbitrary sign, corresponding to the spin-up and spin-down possible alignment along the z-axis. We also find that the choice of the supplementary conditions leads to clock effects of substantially different magnitude. In fact, for co-rotating and counter-rotating particles having the same spin magnitude and orientation, the gravitomagnetic clock effect induced by the background metric can be magnified or inhibited and even suppressed by the contribution of the individual particle's spin. Quite surprisingly this contribution can be itself made vanishing leading to a clock effect undistiguishable from that of non spinning particles. The results of our analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum Gravity, 200

    Spin precession in the Schwarzschild spacetime: circular orbits

    Full text link
    We study the behavior of nonzero rest mass spinning test particles moving along circular orbits in the Schwarzschild spacetime in the case in which the components of the spin tensor are allowed to vary along the orbit, generalizing some previous work.Comment: To appear on Classical and Quantum Gravity, 200

    Circulating endothelial progenitor cells are actively involved in the reparative mechanisms of stable ischemic myocardium

    Get PDF
    Background: Myocardial fibrosis (MF) is an adverse correlate of severe aortic valve stenosis (SAVS). microRNA expression modulates different pathophysiological pathways in cardiovascular disease. In particular miRNA­21, has been associated to MF due to pressure overload. Non­invasive estimation of MF, using speckle­tracking echocardiography (2D­STE), could be useful in determining early myocardial damage. Purpose: To analyze the correlation between 2D­STE parameters, MF, plasmatic and tissue miRNA­21 in SAVS. Methods: We evaluated 36 consecutive patients (75.2±8 y.o., 63% F) with SAVS and preserved ejection fraction (EF), undergoing to surgical aortic valve replacement (AVR; Euroscore II 2.28±1.13%; Logistic Euroscore: 6±4.1%). Clinical, ECG, biohumoral evaluation (including plasma miRNA­21) and a complete echocardiography, including 2D­STE, was performed before AVR. 28 patients eventually underwent AVR and, in 23 of them, a basal interventricular septum biopsy was performed. MF and tissue miRNA­21 expression (micro­dissection) were evaluated in each sample. Results: All patients with SAVS (AVAi 0.33±0.1 cm2/m2; V max 4.4±0.4 m/sec; Mean Grad. 50±9 mmHg) showed concentric hypertrophy (LVMi 147±20.7 g/m2, RWT 0.51±0.07), diastolic dysfunction and increased Valvulo­Arterial Impedance (ZVA: 5.9±2.3 mmHg/ml/m2). Despite a preserved EF (66±11%), an altered global and septal deformation (Global longitudinal strain, GLS −13±6.1; Global longitudinal strain rate, GLSr −0.8±0.2 1/sec; Global early diastolic Sr, GLSrE 1±0.35 1/sec; Septal longitudinal strain, SLS −8.6±2.8%; SL­Sr −0,6±0.1 1/sec; SL­SrE 0.6±0.29 1/sec) were observed. We found a significant association between MF and 2D­STE parameters, stroke volume and end­diastolic pressure (all p<0.05). Tissue miRNA­21 was mainly expressed in fibrous tissue than in myocardium (p<0.0001). Myocardial miRNA­21 was associated with AVAi (r=0.46; p=0.043) and cardiac index (r=0.5; p=0.02) while fibrous tissue miRNA­21 was associated to GLS (r=0.8; p=0.0003), GLSrE (r=−0.72; p=0.005), SLS (r=0.6; p=0.01), SL­Sr (r=0.54; p=0.03), SL­SrE (r=0.5; p=0.04) and PAPs (r=0.66; p=0.004). Plasma miRNA­21 was associated to MF (r=0.5; p=0.02) and septal longitudinal strain (r=0.38; p=0.037). Conclusions: In SAVS with preserved EF, MF is associated to impaired myocardial deformation. miRNA­21 has a potential pathophysiological role in fibrogenesis. Non­invasive evaluation of plasmatic miRNA­21 and 2D­STE could be useful in risk stratification, to optimize the timing of surgery in SAVS patients

    Kerr metric, static observers and Fermi coordinates

    Full text link
    The coordinate transformation which maps the Kerr metric written in standard Boyer-Lindquist coordinates to its corresponding form adapted to the natural local coordinates of an observer at rest at a fixed position in the equatorial plane, i.e., Fermi coordinates for the neighborhood of a static observer world line, is derived and discussed in a way which extends to any uniformly circularly orbiting observer there.Comment: 15 page latex iopart class documen

    HST survey of the Orion Nebula Cluster in the H2_2O 1.4 Ό\mum absorption band: I. A census of substellar and planetary mass objects

    Get PDF
    In order to obtain a complete census of the stellar and sub-stellar population, down to a few MJup_{Jup} in the ∌1\sim1 Myr old Orion Nebula Cluster, we used the infrared channel of the Wide Field Camera 3 of the Hubble Space Telescope with the F139M and F130N filters. These bandpasses correspond to the 1.4ÎŒ1.4 \mum H2_2O absorption feature and an adjacent line-free continuum region. Out of 4,5044,504 detected sources, 3,3523,352 (about 75%75\%) appear fainter than m130=14_{130}=14 (Vega mag) in the F130N filter, a brightness corresponding to the hydrogen-burning limit mass (M≃0.072M⊙\simeq 0.072 M_\odot) at ∌1\sim 1 Myr. Of these, however, only 742742 sources have a negative F130M-139N color index, indicative of the presence of H2_2O vapor in absorption, and can therefore be classified as bona-fide M and L dwarfs, with effective temperatures Tâ‰Č2850\lesssim 2850 K at an assumed 11 Myr cluster age. On our color-magnitude diagram, this population of sources with H2_2O absorption appears clearly distinct from the larger background population of highly reddened stars and galaxies with positive F130M-F139N color index, and can be traced down to the sensitivity limit of our survey, m130≃21.5_{130}\simeq 21.5, corresponding to a 11 Myr old ≃3\simeq 3 MJup_{Jup}, planetary mass object under about 2 magnitudes of visual extinction. Theoretical models of the BT-Settl family predicting substellar isochrones of 1,21, 2 and 33 Myr (down to ∌1\sim 1 MJup_{Jup}) fail to reproduce the observed H2_2O color index at Mâ‰Č20\lesssim 20 MJup_{Jup}. We perform a Bayesian analysis to determine extinction, mass and effective temperature of each sub-stellar member of our sample, together with its membership probability.Comment: Accepted for publication in the Astrophysical Journal. The resolution of several figures has been downgraded to comply with the size limit of arXiv submission

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Habitat Suitability Modeling to Identify the Potential Nursery Grounds of the Atlantic Mackerel and Its Relation to Oceanographic Conditions in the Mediterranean Sea

    Get PDF
    Our knowledge for the distribution of Atlantic mackerel (Scomber scombrus) in the Mediterranean Sea is limited and fragmented. In the current work habitat suitability modeling was applied to summer acoustic surveys data of Atlantic mackerel juveniles derived from the north part of the Mediterranean (i.e., acoustic data from the Gulf of Lions, pelagic trawls held during acoustic surveys in Spanish Mediterranean waters, south Adriatic Sea, Strait of Sicily, and North Aegean Sea) using generalized additive models (GAMs) along with satellite environmental and bathymetry data. Bathymetry along with sea surface temperature and circulation patterns, expressed through sea level anomaly and the zonal component of the absolute geostrophic velocity, were the environmental variables best to describe nursery grounds. The selected model was used to produce maps presenting the potential nursery grounds of Atlantic mackerel throughout the Mediterranean Sea as a measure of habitat adequacy. However, the assessed potential nursery grounds were generally marked as “occasional,” implying that although there are areas presenting high probability to encounter Atlantic mackerel, this picture can largely vary from year to year stressing the high susceptibility of the species to environmental conditions. In a further step and toward a spatial management perspective, we have estimated and visualized the overlap between Atlantic mackerel and anchovy/ sardine juvenile grounds throughout the basin. Results showed that although the degree of overlapping was generally low, not exceeding 15% in general, this varied at a regional level going up to 30%. The potential of the output of this work for management purposes like the implementation of spatially-explicit management tools is discussedVersión del edito

    Density dependence in the spatial behaviour of anchovy and sardine across Mediterranean systems

    Get PDF
    A spatial indicator—the spreading area index—is used to describe anchovy and sardine spatial distribution in relation to biomass variation and to look for ecosystem differences within the Mediterranean basin. Specifically, the variation in the spreading area index in relation to biomass was examined for different areas of the Mediterranean Sea (i.e. Aegean Sea, western Adriatic Sea, Strait of Sicily, Gulf of Lion, and Spanish Mediterranean waters). In order to capture the spatial variability of the population at different levels of fish density, acoustic survey data for the years of highest, lowest, and intermediate abundance were used. In a subsequent step standardized values of spreading area and biomass were estimated to allow comparisons. Results showed pronounced area differences. A significant relationship was revealed in the case of anchovy for areas with extended continental shelf (i.e. Aegean Sea, Adriatic Sea, and Gulf of Lion), indicating an increase in biomass with an increase in the spreading area. No relationship was found for areas dominated by narrow continental shelf and strong currents (i.e. Spanish Mediterranean waters and the Strait of Sicily). With regard to sardine, an increase in biomass was followed by an increase in the spreading area when estimates from the Aegean Sea, the Adriatic Sea, and the Strait of Sicily were considered together. The relationship was even more Abstracts–Theme Session B 9 pronounced when analysis was limited to the Aegean Sea and the Strait of Sicily. No relationship was found for the Spanish Mediterranean waters and the Gulf of Lion. This clearly implies that spatial indicators should be integrated into ecosystem management, taking into account that they can be area‐ or ecosystem‐dependent

    Methods and approaches for blind test predictions of out-of-plane behavior of masonry walls: a numerical comparative study

    Get PDF
    Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.info:eu-repo/semantics/publishedVersio
    • 

    corecore