9,974 research outputs found

    On The spectrum of a Noncommutative Formulation of the D=11 Supermembrane with Winding

    Get PDF
    A regularized model of the double compactified D=11 supermembrane with nontrivial winding in terms of SU(N) valued maps is obtained. The condition of nontrivial winding is described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermembrane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in terms of a SU(N) geometrical object which in the N→∞ N\to \infty limit, converges to the symplectic connection related to the area preserving diffeomorphisms of the recently obtained non-commutative description of the compactified D=11 supermembrane.(I. Martin, J.Ovalle, A. Restuccia. 2000,2001) The SU(N) regularized canonical lagrangian is explicitly obtained. In the N→∞ N\to \infty limit it converges to the lagrangian in (I.Martin, J.Ovalle, A.Restuccia. 2000,2001) subject to the nontrivial winding condition. The spectrum of the hamiltonian of the double compactified D=11 supermembrane is discussed. Generically, it contains local string like spikes with zero energy. However the sector of the theory corresponding to a principle bundle characterized by the winding number n≠0n \neq 0, described by the SU(N) model we propose, is shown to have no local string-like spikes and hence the spectrum of this sector should be discrete.Comment: 16 pages.Latex2

    Consistent truncation of d = 11 supergravity on AdS_4 x S^7

    Full text link
    We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio

    N=2 Conformal Superspace in Four Dimensions

    Full text link
    We develop the geometry of four dimensional N=2 superspace where the entire conformal algebra of SU(2,2|2) is realized linearly in the structure group rather than just the SL(2,C) x U(2)_R subgroup of Lorentz and R-symmetries, extending to N=2 our prior result for N=1 superspace. This formulation explicitly lifts to superspace the existing methods of the N=2 superconformal tensor calculus; at the same time the geometry, when degauged to SL(2,C) x U(2)_R, reproduces the existing formulation of N=2 conformal supergravity constructed by Howe.Comment: 43 pages; v2 references added, acknowledgments update

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    On BPS bounds in D=4 N=2 gauged supergravity II: general matter couplings and black hole masses

    Get PDF
    We continue the analysis of BPS bounds started in arXiv:1110.2688, extending it to the full class of N=2 gauged supergravity theories with arbitrary vector and hypermultiplets. We derive the general form of the asymptotic charges for asymptotically flat (M_4), anti-de Sitter (AdS_4), and magnetic anti-de Sitter (mAdS_4) spacetimes. Some particular examples from black hole physics are given to explicitly demonstrate how AdS and mAdS masses differ when solutions with non-trivial scalar profiles are considered.Comment: 21 pages; v2 added reference, published version; v3 minor correction

    Stable de Sitter Vacua in 4 Dimensional Supergravity Originating from 5 Dimensions

    Full text link
    The five dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R_s of the R-symmetry group descend to four dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; and second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semi-direct product of SO(1,1) with R^(1,1) together with a simultaneous R_s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with SO(2,1) x R_s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that, its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R_s=U(1)_R, (ii) R_s=SU(2)_R, (iii) N=2 Yang-Mills/Einstein Supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.Comment: 54 page

    Electric and magnetic charges in N=2 conformal supergravity theories

    Get PDF
    General Lagrangians are constructed for N=2 conformal supergravity theories in four space-time dimensions involving gauge groups with abelian and/or non-abelian electric and magnetic charges. The charges are encoded in the gauge group embedding tensor. The scalar potential induced by the gauge interactions is quadratic in this tensor, and, when the embedding tensor is treated as a spurionic quantity, it is formally covariant with respect to electric/magnetic duality. This work establishes a general framework for studying any deformation induced by gauge interactions of matter-coupled N=2 supergravity theories. As an application, full and residual supersymmetry realizations in maximally symmetric space-times are reviewed. Furthermore, a general classification is presented of supersymmetric solutions in AdS2×S2\mathrm{AdS}_2\times S^2 space-times. As it turns out, these solutions allow either eight or four supersymmetries. With four supersymmetries, the spinorial parameters are Killing spinors of AdS2\mathrm{AdS}_2 that are constant on S2S^2, so that they carry no spin, while the bosonic background is rotationally invariant.Comment: 49 pages, typos correcte
    • 

    corecore