24,952 research outputs found
Design and evaluation of a no-tillage seeder for small scale vegetable production using a two-wheeled tractor in Coahuila, Mexico
Currently used conventional tillage systems for small-scale vegetable production in the region of Saltillo, Coahuila, Mexico require a considerable amount of hand labor, energy and materials for all activities. Seedbed preparation can require up to 60% of the total production cost in some systems in Mexico. Further, soil is degraded and eroded due to the system. Conservation tillage may reduce costs and prevent soil degradation, but appropriate tools, such as, no-tillage seeders for small-scale farmers are not available. This papers reports on the design and construction of a prototype of a no-tillage seeder for small-scale conservation tillage using a 2-wheeled tractor. Three main functions received particular attention: opening of the soil, placing seed and/or fertilizer and closing the slot. Because of its vapor conservation and good seedling emergence, tools to create T-shaped slots were chosen, with adapted depth control and closing and covering devices. A systematic design process was applied in order to reach the required decisions. Function diagrams were defined from where morphologic charts guided the selection of the configuration of the seeder. A preliminary evaluation included testing of two furrow opener disc types (notched and fluted), and four crop residue levels, 0, 30, 60 and 100%, with respect to performance of the seeder. An evaluation showed that with low cover amounts a consistent and firm seed cover was obtained, but emergence quality decreased due to insufficient residue cover. The notched disc had a better performance than the fluted disc. The inverted T-shape in the soil was not always sustained due to technical flaws. It was possible to build a prototype under 2000 dollars with basic tools in a local workshop. Further research will focus on the biological performance and improvement of the mechanical components and performance
Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier
Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the conditions of the grid, the DC load/source and the converter nonlinearities. In this paper a passivity-based approach is thoroughly investigated proposing a damping-based solution for the error dynamics. Practical experiments with a real converter validate the analysis.
The phenomenology of electric dipole moments in models of scalar leptoquarks
We study the phenomenology of electric dipole moments (EDMs) induced in
various scalar leptoquark models. We consider generic leptoquark couplings to
quarks and leptons and match to Standard Model effective field theory. After
evolving the resulting operators to low energies, we connect to EDM experiments
by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that
current experimental limits set strong constraints on the possible CP-violating
phases in leptoquark models. Depending on the quarks and leptons involved in
the interaction, the existing searches for EDMs of leptons, nucleons, atoms,
and molecules all play a role in constraining the CP-violating couplings. We
discuss the impact of hadronic and nuclear uncertainties as well as the
sensitivities that can be achieved with future EDM experiments. Finally, we
study the impact of EDM constraints on a specific leptoquark model that can
explain the recent -physics anomalies.Comment: Published versio
Moa and the multi-model architecture: a new perspective on XNF2
Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains
Persistence of the valence bond glass state in the double perovskites Ba2-xSrxYMoO6
Peer reviewedPublisher PD
Preservation of products by functors close to reflectors
AbstractIt is shown that reflectors and similar functors in algebraic and topological-algebraic structures in many cases commute with products. In particular, reflectors of the category of (semi) topological semigroups into the subcategory of compact topological semigroups or groups have this property. The proofs are straightforward and avoid the use of almost periodic functions
Open Transactions on Shared Memory
Transactional memory has arisen as a good way for solving many of the issues
of lock-based programming. However, most implementations admit isolated
transactions only, which are not adequate when we have to coordinate
communicating processes. To this end, in this paper we present OCTM, an
Haskell-like language with open transactions over shared transactional memory:
processes can join transactions at runtime just by accessing to shared
variables. Thus a transaction can co-operate with the environment through
shared variables, but if it is rolled-back, also all its effects on the
environment are retracted. For proving the expressive power of TCCS we give an
implementation of TCCS, a CCS-like calculus with open transactions
Environmental monitoring in heterogeneous soil-landscapes; A Dutch case study
The spatial heterogeneity of agricultural soil-landscapes is mostly not taken into account in environmental policies. Most environmental goals have been defined at national level or farm level but not at the landscape level. The potential for setting up a regional environmental monitoring network that supports self governance was explored. The research was performed in the Northern Friesian Woodland
Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven
We analyze neutrinoless double beta decay () within the
framework of the Standard Model Effective Field Theory. Apart from the
dimension-five Weinberg operator, the first contributions appear at dimension
seven. We classify the operators and evolve them to the electroweak scale,
where we match them to effective dimension-six, -seven, and -nine operators. In
the next step, after renormalization group evolution to the QCD scale, we
construct the chiral Lagrangian arising from these operators. We develop a
power-counting scheme and derive the two-nucleon currents up
to leading order in the power counting for each lepton-number-violating
operator. We argue that the leading-order contribution to the decay rate
depends on a relatively small number of nuclear matrix elements. We test our
power counting by comparing nuclear matrix elements obtained by various methods
and by different groups. We find that the power counting works well for nuclear
matrix elements calculated from a specific method, while, as in the case of
light Majorana neutrino exchange, the overall magnitude of the matrix elements
can differ by factors of two to three between methods. We calculate the
constraints that can be set on dimension-seven lepton-number-violating
operators from experiments and study the interplay between
dimension-five and -seven operators, discussing how dimension-seven
contributions affect the interpretation of in terms of the
effective Majorana mass .Comment: Matches version published in JHE
Processing multiple non-adjacent dependencies: evidence from sequence learning
Processing non-adjacent dependencies is considered to be one of the hallmarks of human language. Assuming that sequence-learning tasks provide a useful way to tap natural-language-processing mechanisms, we cross-modally combined serial reaction time and artificial-grammar learning paradigms to investigate the processing of multiple nested (A(1)A(2)A(3)B(3)B(2)B(1)) and crossed dependencies (A(1)A(2)A(3)B(1)B(2)B(3)), containing either three or two dependencies. Both reaction times and prediction errors highlighted problems with processing the middle dependency in nested structures (A(1)A(2)A(3)B(3-)B(1)), reminiscent of the 'missing-verb effect' observed in English and French, but not with crossed structures (A(1)A(2)A(3)B(1-)B(3)). Prior linguistic experience did not play a major role: native speakers of German and Dutch-which permit nested and crossed dependencies, respectively-showed a similar pattern of results for sequences with three dependencies. As for sequences with two dependencies, reaction times and prediction errors were similar for both nested and crossed dependencies. The results suggest that constraints on the processing of multiple non-adjacent dependencies are determined by the specific ordering of the non-adjacent dependencies (i.e. nested or crossed), as well as the number of non-adjacent dependencies to be resolved (i. e. two or three). Furthermore, these constraints may not be specific to language but instead derive from limitations on structured sequence learning.Netherlands Organisation of Scientific Research (NWO) [446-08-014]; Max Planck Institute for Psycholinguistics; Donders Institute for Brain, Cognition and Behaviour; Fundacao para a Ciencia e Tecnologia (IBB/CBME, LA, FEDER/POCI) [PTDC/PSI-PCO/110734/2009]; Stockholm Brain Institute; Vetenskapsradet; Swedish Dyslexia Foundation; Hedlunds Stiftelse; Stockholm County Council (ALF, FoUU)info:eu-repo/semantics/publishedVersio
- …