14,554 research outputs found

    Massive galaxies with very young AGN

    Full text link
    Gigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources and live in massive ellipticals. GPS sources are vital for studying the early evolution of radio-loud AGN, the trigger of their nuclear activity, and the importance of feedback in galaxy evolution. We study the Parkes half-Jansky sample of GPS radio galaxies of which now all host galaxies have been identified and 80% has their redshifts determined (0.122 < z < 1.539). Analysis of the absolute magnitudes of the GPS host galaxies show that at z > 1 they are on average a magnitude fainter than classical 3C radio galaxies. This suggests that the AGN in young radio galaxies have not yet much influenced the overall properties of the host galaxy. However their restframe UV luminosities indicate that there is a low level of excess as compared to passive evolution models.Comment: To appear in the proceedings of "Formation and Evolution of Galaxy Bulges", IAUS 245; M. Bureau, E. Athanassoula & B. Barbuy, ed

    Star-Formation in Low Radio Luminosity AGN from the Sloan Digital Sky Survey

    Get PDF
    We investigate faint radio emission from low- to high-luminosity Active Galactic Nuclei (AGN) selected from the Sloan Digital Sky Survey (SDSS). Their radio properties are inferred by co-adding large ensembles of radio image cut-outs from the FIRST survey, as almost all of the sources are individually undetected. We correlate the median radio flux densities against a range of other sample properties, including median values for redshift, [OIII] luminosity, emission line ratios, and the strength of the 4000A break. We detect a strong trend for sources that are actively undergoing star-formation to have excess radio emission beyond the ~10^28 ergs/s/Hz level found for sources without any discernible star-formation. Furthermore, this additional radio emission correlates well with the strength of the 4000A break in the optical spectrum, and may be used to assess the age of the star-forming component. We examine two subsamples, one containing the systems with emission line ratios most like star-forming systems, and one with the sources that have characteristic AGN ratios. This division also separates the mechanism responsible for the radio emission (star-formation vs. AGN). For both cases we find a strong, almost identical, correlation between [OIII] and radio luminosity, with the AGN sample extending toward lower, and the star-formation sample toward higher luminosities. A clearer separation between the two subsamples is seen as function of the central velocity dispersion of the host galaxy. For systems with similar redshifts and velocity dispersions, the star-formation subsample is brighter than the AGN in the radio by an order of magnitude. This underlines the notion that the radio emission in star-forming systems can dominate the emission associated with the AGN.Comment: Accepted for publication in Astronomical Journal; 15 pages, 8 color figure

    Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans

    Get PDF
    Trehalose is a non-reducing disaccharide found at high concentrations in Aspergillus nidulans conidia and rapidly degraded upon induction of conidial germination. Furthermore, trehalose is accumulated in response to a heat shock or to an oxidative shock. The authors have characterized the A. nidulans tpsA gene encoding trehalose-6-phosphate synthase, which catalyses the first step in trehalose biosynthesis. Expression of tpsA in a Saccharomyces cerevisiae tps1 mutant revealed that the tpsA gene product is a functional equivalent of the yeast Tps1 trehalose-6-phosphate synthase. The A. nidulans tpsA-null mutant does not produce trehalose during conidiation or in response to various stress conditions. While germlings of the tpsA mutant show an increased sensitivity to moderate stress conditions (growth at 45 °C or in the presence of 2 mM H2O2), they display a response to severe stress (60 min at 50 °C or in the presence of 100 mM H2O2) similar to that of wild-type germlings. Furthermore, conidia of the tpsA mutant show a rapid loss of viability upon storage. These results are consistent with a role of trehalose in the acquisition of stress tolerance. Inactivation of the tpsA gene also results in increased steady-state levels of sugar phosphates but does not prevent growth on rapidly metabolizable carbon sources (glucose, fructose) as seen in Saccharomyces cerevisiae. This suggests that trehalose 6-phosphate is a physiological inhibitor of hexokinase but that this control is not essential for proper glycolytic flux in A. nidulans. Interestingly, tpsA transcription is not induced in response to heat shock or during conidiation, indicating that trehalose accumulation is probably due to a post-translational activation process of the trehalose 6-phosphate synthase

    Micron-sized forsterite grains in the pre-planetary nebula of IRAS 17150-3224 - Searching for clues on the mysterious evolution of massive AGB stars

    Get PDF
    We study the grain properties and location of the forsterite crystals in the circumstellar environment of the pre-planetary nebula (PPN) IRAS 17150-3224 in order to learn more about the as yet poorly understood evolutionary phase prior to the PPN. We use the best-fit model for IRAS 17150-3224 of Meixner et al. (2002) and add forsterite to this model. We investigate different spatial distributions and grain sizes of the forsterite crystals in the circumstellar environment. We compare the spectral bands of forsterite in the mid-infrared and at 69 micrometre in radiative transport models to those in ISO-SWS and Herschel/PACS observations. We can reproduce the non-detection of the mid-infrared bands and the detection of the 69 micrometre feature with models where the forsterite is distributed in the whole outflow, in the superwind region, or in the AGB-wind region emitted previous to the superwind, but we cannot discriminate between these three models. To reproduce the observed spectral bands with these three models, the forsterite crystals need to be dominated by a grain size population of 2 micrometre up to 6 micrometre. We hypothesise that the large forsterite crystals were formed after the superwind phase of IRAS 17150-3224, where the star developed an as yet unknown hyperwind with an extremely high mass-loss rate (10^-3 Msol/yr). The high densities of such a hyperwind could be responsible for the efficient grain growth of both amorphous and crystalline dust in the outflow. Several mechanisms are discussed that might explain the lower-limit of 2 micrometre found for the forsterite grains, but none are satisfactory. Among the mechanisms explored is a possible selection effect due to radiation pressure based on photon scattering on micron-sized grains.Comment: Accepted by A&

    Integrated topology optimisation of multi-energy networks

    Get PDF
    Multi-carrier hybrid energy distribution net- works provide flexibility in case of network malfunctions, energy shortages and price fluctuations through energy conversion and storage. Therefore hybrid networks can cope with large-scale integration of distributed and intermittent renewable energy sources. In this article an optimisation approach is proposed which determines the optimal topology of hybrid networks
    • …
    corecore