10,274 research outputs found
A Birkhoff connection between quantum circuits and linear classical reversible circuits
Birkhoff's theorem tells how any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. Similar theorems on unitary matrices reveal a connection between quantum circuits and linear classical reversible circuits. It triggers the question whether a quantum computer can be regarded as a superposition of classical reversible computers
Environmental monitoring in heterogeneous soil-landscapes; A Dutch case study
The spatial heterogeneity of agricultural soil-landscapes is mostly not taken into account in environmental policies. Most environmental goals have been defined at national level or farm level but not at the landscape level. The potential for setting up a regional environmental monitoring network that supports self governance was explored. The research was performed in the Northern Friesian Woodland
The phenomenology of electric dipole moments in models of scalar leptoquarks
We study the phenomenology of electric dipole moments (EDMs) induced in
various scalar leptoquark models. We consider generic leptoquark couplings to
quarks and leptons and match to Standard Model effective field theory. After
evolving the resulting operators to low energies, we connect to EDM experiments
by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that
current experimental limits set strong constraints on the possible CP-violating
phases in leptoquark models. Depending on the quarks and leptons involved in
the interaction, the existing searches for EDMs of leptons, nucleons, atoms,
and molecules all play a role in constraining the CP-violating couplings. We
discuss the impact of hadronic and nuclear uncertainties as well as the
sensitivities that can be achieved with future EDM experiments. Finally, we
study the impact of EDM constraints on a specific leptoquark model that can
explain the recent -physics anomalies.Comment: Published versio
DYNAMIC ELUTRIATION MEASUREMENT IN A CONTINUOUSLY OPERATED BUBBLING FLUIDIZED BED
Measurements were performed using a novel thermal mass flow meter. The dynamic behaviour of the total elutriation rate was monitored from start-up until a steady rate was achieved. It was found that the elutriation rate at unsteady conditions can be as much as 5 times that of the steady value and that it can take more than an hour to reach steady state. This is attributed to the dynamic changes of the fines distribution between the fluidized bed and dipleg. It was further shown that a steady dipleg height does not indicate steady elutriation rates. Using the flow meter to confirm steady state measurements, elutriation constants were determined for the glass bead - air system at different superficial velocities
Automatic Segmentation of the Left Ventricle in Cardiac CT Angiography Using Convolutional Neural Network
Accurate delineation of the left ventricle (LV) is an important step in
evaluation of cardiac function. In this paper, we present an automatic method
for segmentation of the LV in cardiac CT angiography (CCTA) scans. Segmentation
is performed in two stages. First, a bounding box around the LV is detected
using a combination of three convolutional neural networks (CNNs).
Subsequently, to obtain the segmentation of the LV, voxel classification is
performed within the defined bounding box using a CNN. The study included CCTA
scans of sixty patients, fifty scans were used to train the CNNs for the LV
localization, five scans were used to train LV segmentation and the remaining
five scans were used for testing the method. Automatic segmentation resulted in
the average Dice coefficient of 0.85 and mean absolute surface distance of 1.1
mm. The results demonstrate that automatic segmentation of the LV in CCTA scans
using voxel classification with convolutional neural networks is feasible.Comment: This work has been published as: Zreik, M., Leiner, T., de Vos, B.
D., van Hamersvelt, R. W., Viergever, M. A., I\v{s}gum, I. (2016, April).
Automatic segmentation of the left ventricle in cardiac CT angiography using
convolutional neural networks. In Biomedical Imaging (ISBI), 2016 IEEE 13th
International Symposium on (pp. 40-43). IEE
- …