4,123 research outputs found

    Chemical Constraints on the Water and Total Oxygen Abundances in the Deep Atmosphere of Saturn

    Full text link
    Thermochemical equilibrium and kinetic calculations for the trace gases CO, PH3, and SiH4 give three independent constraints on the water and total oxygen abundances of Saturn's deep atmosphere. A lower limit to the water abundance of H2O/H2 > 1.7 x 10^-3 is given by CO chemistry while an upper limit of H2O/H2 < 5.5 x 10^-3 is given by PH3 chemistry. A combination of the CO and PH3 constraints indicates a water enrichment on Saturn of 1.9 to 6.1 times the solar system abundance (H2O/H2 = 8.96 x 10^-4). The total oxygen abundance must be at least 1.7 times the solar system abundance (O/H2 = 1.16 x 10^-3) in order for the SiH4 to remain below a detection limit of SiH4/H2 < 2 x 10^-10. A combination of the CO, PH3, and SiH4 constraints suggests that the total oxygen abundance on Saturn is 3.2 to 6.4 times the solar system abundance. Our results indicate that oxygen on Saturn is less enriched than other heavy elements (such as C and P) relative to a solar system composition. This work was supported by NASA NAG5-11958.Comment: 19 pages, 2 figures, accepted for publication in the Astrophysical Journa

    The partition algebra and the Kronecker product (Extended Abstract)

    Get PDF
    We propose a new approach to study the Kronecker coefficients by using the Schur–Weyl duality between the symmetric group and the partition algebra

    The partition algebra and the Kronecker coefficients

    Get PDF
    We propose a new approach to study the Kronecker coefficients by using the Schur-Weyl duality between the symmetric group and the partition algebra. We explain the limiting behaviour and associated bounds in the context of the partition algebra. Our analysis leads to a uniform description of the reduced Kronecker coefficients when one of the indexing partitions is a hook or a two-part partition

    Image patch analysis of sunspots and active regions. II. Clustering via matrix factorization

    Full text link
    Separating active regions that are quiet from potentially eruptive ones is a key issue in Space Weather applications. Traditional classification schemes such as Mount Wilson and McIntosh have been effective in relating an active region large scale magnetic configuration to its ability to produce eruptive events. However, their qualitative nature prevents systematic studies of an active region's evolution for example. We introduce a new clustering of active regions that is based on the local geometry observed in Line of Sight magnetogram and continuum images. We use a reduced-dimension representation of an active region that is obtained by factoring the corresponding data matrix comprised of local image patches. Two factorizations can be compared via the definition of appropriate metrics on the resulting factors. The distances obtained from these metrics are then used to cluster the active regions. We find that these metrics result in natural clusterings of active regions. The clusterings are related to large scale descriptors of an active region such as its size, its local magnetic field distribution, and its complexity as measured by the Mount Wilson classification scheme. We also find that including data focused on the neutral line of an active region can result in an increased correspondence between our clustering results and other active region descriptors such as the Mount Wilson classifications and the RR value. We provide some recommendations for which metrics, matrix factorization techniques, and regions of interest to use to study active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 33 pages, 12 figure

    Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Full text link
    The flare-productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region from its surrounding part. We find the relationship between complexity of an active region as measured by Mount Wilson and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. These results also pave the way for patch-based dictionary learning with a view towards automatic clustering of active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 23 pages, 11 figure

    New Developments in MadGraph/MadEvent

    Full text link
    We here present some recent developments of MadGraph/MadEvent since the latest published version, 4.0. These developments include: Jet matching with Pythia parton showers for both Standard Model and Beyond the Standard Model processes, decay chain functionality, decay width calculation and decay simulation, process generation for the Grid, a package for calculation of quarkonium amplitudes, calculation of Matrix Element weights for experimental events, automatic dipole subtraction for next-to-leading order calculations, and an interface to FeynRules, a package for automatic calculation of Feynman rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea, June 2008. To appear in the proceeding

    Predicting disclosure and help-seeking in university students with psychosocial problems based on stigma and attitudes towards disclosure and help-seeking

    Get PDF
    Despite high prevalence of mental health problems among university students, there’s a gap between the need for help and the actual treatment received. This study investigated disclosure on distress and hazardous alcohol use and help-seeking behavior in a sample of 1,791 students of a Dutch university of applied sciences. Students’ perceived public and personal stigma, and attitudes towards disclosure and help-seeking were assessed as possible predictors of disclosure and help-seeking behavior. Results of the analysis of variance and logistic regression analysis indicated that perceived public and personal stigma did not predict disclosure and helpseeking behavior, but that attitudes towards disclosure and help-seeking did. Students with both distress and hazardous alcohol use have the least tendency to disclose their problems to family, friends or classmates, but at the same time they do tend to seek help. Disclosure and seeking help for mental health challenges are health promoting competencies that seem to need more attention in university students. Although further research needs to validate these findings, it is recommended to promote disclosure and help-seeking among students by investing in mental health literacy programs, to educate students about mental health issues, raise awareness on available mental health services and their potential benefits

    A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov.

    Get PDF
    Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present. Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C. The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702

    Environmental effects with Frozen Density Embedding in Real-Time Time-Dependent Density Functional Theory using localized basis functions

    Get PDF
    Frozen Density Embedding (FDE) represents a versatile embedding scheme to describe the environmental effect on the electron dynamics in molecular systems. The extension of the general theory of FDE to the real-time time-dependent Kohn-Sham method has previously been presented and implemented in plane-waves and periodic boundary conditions (Pavanello et al. J. Chem. Phys. 142, 154116, 2015). In the current paper, we extend our recent formulation of real-time time-dependent Kohn-Sham method based on localized basis set functions and developed within the Psi4NumPy framework (De Santis et al. J. Chem. Theory Comput. 2020, 16, 2410) to the FDE scheme. The latter has been implemented in its "uncoupled" flavor (in which the time evolution is only carried out for the active subsystem, while the environment subsystems remain at their ground state), using and adapting the FDE implementation already available in the PyEmbed module of the scripting framework PyADF. The implementation was facilitated by the fact that both Psi4NumPy and PyADF, being native Python API, provided an ideal framework of development using the Python advantages in terms of code readability and reusability. We demonstrate that the inclusion of the FDE potential does not introduce any numerical instability in time propagation of the density matrix of the active subsystem and in the limit of weak external field, the numerical results for low-lying transition energies are consistent with those obtained using the reference FDE calculations based on the linear response TDDFT. The method is found to give stable numerical results also in the presence of strong external field inducing non-linear effects
    corecore