29 research outputs found

    Overview of the LISA mission and R&D developments at the APC

    Get PDF
    International audienceThe study of the gravitational waves opens a new window for the observation of the universe. Completing the observations obtained from electro-magnetic waves, neutrinos and cosmic rays, the gravitational waves will provide informations on the most violent phenomena in the universe, as supernova explosions, collisions of binary systems or mergers of black holes. Their study will thus increase our knowledge in astrophysics, but also in cosmology and fundamental physics. This paper will make a short presentation of the future space interferometer LISA, aiming at detecting gravitational waves, and presents an overview of the R&D developments for LISA at the APC laboratory

    LISA ON TABLE: AN OPTICAL SIMULATOR FOR LISA

    Get PDF
    LISA, the first space project for detecting gravitational waves, relies on two main technical challenges: the free falling masses and an outstanding precision on phase shift measurements (a few pm on 5 Mkm in the LISA band). The technology of the free falling masses, i.e. their isolation to forces other than gravity and the capability for the spacecraft to precisely follow the test masses, will soon be tested with the technological LISA Pathfinder mission. The performance of the phase measurement will be achieved by at least two stabilization stages: a pre-stabilisation of the laser frequency at a level of 10-13 (relative frequency stability) will be further improved by using numerical algorithms, such as Time Delay Interferometry, which have been theoretically and numerically demonstrated to reach the required performance level (10-21). Nevertheless, these algorithms, though already tested with numerical model of LISA, require experimental validation, including 'realistic' hardware elements. Such an experiment would allow to evaluate the expected noise level and the possible interactions between subsystems. To this end, the APC is currently developing an optical benchtop experiment, called LISA On Table (LOT), which is representative of the three LISA spacecraft. A first module of the LOT experiment has been mounted and is being characterized. After completion this facility may be used by the LISA community to test hardware (photodiodes, phasemeters) or software (reconstruction algorithms) components

    Probing the 6He halo structure with elastic and inelastic proton scattering

    Full text link
    Proton elastic scattering and inelastic scattering to the first excited state of 6He have been measured over a wide angular range using a 40.9A MeV 6He beam. The data have been analyzed with a fully microscopic model of proton-nucleus scattering using 6He wave functions generated from large space shell model calculations. The inelastic scattering data show a remarkable sensitivity to the halo structure of 6He.Comment: 9 pages, 3 figures. RevTeX. Replaced figure 3 with updated figur

    The calculation of total reaction cross sections induced by intermediate energy α\alpha-particles with BUU Model

    Full text link
    The Boltzmann-Uehling-Uhlenbeck (BUU) Model, which includes the Fermi motion, the mean field, individual nucleon-nucleon (N-N) interactions and the Pauli blocking effect etc., is used to calculate the total reaction cross section σR\sigma_R induced by α\alpha-particles on different targets in the incident energy range from 17.4 to 48.1 MeV/u. The calculation result can reproduce the experimental data well. The nucleus-nucleus interaction radius parameter r0r_0 was extracted from experimental σR\sigma_R. It is found that r0r_0 becomes constant with increasing the mass number of target.Comment: 4 pages, 4 fig

    Molecular laser stabilization at low frequencies for the LISA mission

    No full text
    We have developed a 532 nm iodine stabilized laser system that may be suitable for the LISA mission (Laser Interferometer Space Antenna) or other future spaceborne missions. This system is based on an externally frequency-doubled Nd:YAG laser source and uses the molecular transfer spectroscopy technique for the frequency stabilization. This technique has been optimized for LISA: compactness (less than 1.1×1.1m2), vacuum compatibility, ease of use and initialization, minimization of the number of active components (acousto-optic modulators are both used for frequency shifting and phase modulating the pump beam). By locking on the a10 hyperfine component of the R(56)32-0 transition, we find an Allan standard deviation (σ) of 3×10-14 at 1 s and σ<2×10-14 for 20s≤τ≤103s. In terms of linear spectral density, this roughly corresponds to a stability better than 30Hz/Hz between 10-2 and 1 Hz with a stability decrease close to 1/f below 10 mHz

    Analysis of proton scattering of stable and exotic light nuclei using an energy-dependent microscopic optical potential

    No full text
    The proton elastic scattering off the 9,10,11,12Be isotopes at a wide energy range from 3 to 200 MeV/nucleon is analyzed using the optical model with the partial-wave expansion method. The microscopic optical potential (OP) is taken within the single-folding model. The density- and isospin-dependent M3YParis nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the highenergy approximation for the imaginary one. The cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation is successfully used. The volume integrals of the OP parts have systematic energy dependencies and they can be parameterized as functions of energy. From these parametrization, an energy-dependent OP can be obtained
    corecore