283 research outputs found

    Using social engagement to inspire design learning

    Get PDF
    Social design and ‘design for need’ are important frameworks for establishing ethical understanding amongst novice product designers. Typically, product design is a value-adding activity where normally aesthetics, usability and manufacturability are the key agendas. Howard [1] in his essay “Design beyond commodification” discusses the role of designers in contributing to cultural expressions designed to influence consumer aspirations and desires. He argues that designers are impelled “to participate in the creation of lifestyles that demand the acquisition of goods as a measure of progress and status.” As emerging consumers, student designers tend to reflect this consumer culture in their work, seeking to add ‘marketability’ by focusing on aesthetic development. However value adding can occur in many different manifestations, often outside commercial expectations and the students’ experience. Projects that may be perceived as having limited market potential can often have significant personal impact for both recipient and designer. Social engagement provides a valuable insight for design students into the potential of design to contribute solutions to societal well-being, rather than serve market forces. Working in a local context can enhance this, with unlimited access to end users, their environs and the product context, enabling the development of user empathy and a more intgrated collaborative process. The ‘Fixperts’ social project discussed in this paper has proved to be an effective method of engaging undergraduate students in participatory design within their local community. This model for social engagement has provided an unprecedented learning experience, and established a strong ethical framework amongst Brunel design students

    The influence of work placement on the academic achievement of undergraduate design students

    Get PDF
    The aim of this paper is to investigate the contribution of work placement in enhancing the academic performance of undergraduate design students. A statistical analysis was carried out on a population sample which comprised design students who had graduated at Brunel University London in four different academic years. All the required (anonymous) data were obtained from the university electronic records system. The dataset comprises a total of 411 students, of which 323 were placement students and 88 non-placement students. Students were also classified as higher achievers (students whose second year average mark was 60% or above) and lower achievers. The results seem to suggest that for both higher and lower achievers the placement experience enables students to achieve on average a greater final year mark and a greater improvement from the second to the final year. The study also established that these grade gains were of a similar magnitude irrespective of the students overall academic standing. Finally, the results of this study seem to suggest that the work placement experience give students a particular advantage in the final year project and in the modules characterized by design-focused assessment components

    Temporal Patterns of Honeybee Foraging in a Diverse Floral Landscape Revealed Using Pollen DNA Metabarcoding of Honey

    Get PDF
    Understanding the plants pollinators use through the year is vital to support pollinator populations and mitigate for declines in floral resources due to habitat loss. DNA metabarcoding allows the temporal picture of nectar and pollen foraging to be examined in detail. Here, we use DNA metabarcoding to examine the forage use of honeybees (Apis mellifera L.) within a florally diverse landscape within the UK, documenting the key forage plants used and seasonal progression over two years. The total number of plant taxa detected in the honey was 120, but only 16 of these were found with a high relative read abundance of DNA, across the main foraging months (April–September). Only a small proportion of the available flowering genera in the landscape were used by the honeybees. The greatest relative read abundance came from native or near-native plants, including Rubus spp., Trifolium repens, the Maleae tribe including Crataegus, Malus, and Cotoneaster, and Hedera helix. Tree species were important forage in the spring months, followed by increased use of herbs and shrubs later in the foraging season. Garden habitat increased the taxon richness of native, near-native and horticultural plants found in the honey. Although horticultural plants were rarely found abundantly within the honey samples, they may be important for increasing nutritional diversity of the pollen forage

    Shifts in honeybee foraging reveal historical changes in floral resources

    Get PDF
    Decreasing floral resources as a result of habitat loss is one of the key factors in the decline of pollinating insects worldwide. Understanding which plants pollinators use is vital to inform the provision of appropriate floral resources to help prevent pollinator loss. Using a globally important pollinator, the honeybee, we show how changes in agricultural intensification, crop use and the spread of invasive species, have altered the nectar and pollen sources available in the UK. Using DNA metabarcoding, we analysed 441 honey samples from 2017 and compared these to a nationwide survey of honey samples from 1952. We reveal that shifts in major plants foraged by honeybees are driven by changes in the availability of these plants within the landscape. Improved grasslands are the most widespread habitat type in the UK, and management changes within this habitat have the greatest potential to increase floral resource availability

    Breeding system and spatial isolation from congeners strongly constrain seed set in an insect-pollinated apomictic tree: Sorbus subcuneata (Rosaceae)

    Get PDF
    The article associated with this dataset is in ORE at: http://hdl.handle.net/10871/26965The datasets are the results of 1) pollen grain accumulation on stigmas. 2) Flowering phenology of individual trees as % of opened buds, with 50 percentile values of the cumulative flowering curve. 3) Location data for all trees of both species of flowering size (see article text) plus connectivity measures of maternal seed trees to all S. admonitor trees. X and y coordinates are GB OS National Grid. This data is related to the Scientific Reports paper of the same title.Whitley Wildlife Conservation Trust, Paignton Zoo Environmental ParkNER

    Pollen metabarcoding reveals broad and species-specific resource use by urban bees

    Get PDF
    Bee populations are currently undergoing severe global declines driven by the interactive effects of a number of factors. Ongoing urbanisation has the potential to exacerbate bee declines, unless steps are taken to ensure appropriate floral resources are available. Sown wildflower strips are one way in which floral resources can be provided to urban bees. However, the use of these strips by pollinators in urban environments remains little studied. Here, we employ pollen metabarcoding of the rbcL gene to compare the foraging patterns of different bee species observed using urban sown wildflower strips in July 2016, with a goal of identifying which plant species are most important for bees. We also demonstrate the use of a non-destructive method of pollen collection. Bees were found to forage on a wide variety of plant genera and families, including a diverse range of plants from outside the wildflower plots, suggesting that foragers visiting sown wildflower strips also utilize other urban habitats. Particular plants within the wildflower strips dominated metabarcoding data, particularly Papaver rhoeas and Phacelia tanacetifolia. Overall, we demonstrate that pollinators observed in sown wildflower strips use certain sown foodplants as part of a larger urban matrix

    Using DNA Metabarcoding to Identify the Floral Composition of Honey:A New Tool for Investigating Honey Bee Foraging Preferences

    Get PDF
    Identifying the floral composition of honey provides a method for investigating the plants that honey bees visit. We compared melissopalynology, where pollen grains retrieved from honey are identified morphologically, with a DNA metabarcoding approach using the rbcL DNA barcode marker and 454-pyrosequencing. We compared nine honeys supplied by beekeepers in the UK. DNA metabarcoding and melissopalynology were able to detect the most abundant floral components of honey. There was 92% correspondence for the plant taxa that had an abundance of over 20%. However, the level of similarity when all taxa were compared was lower, ranging from 22–45%, and there was little correspondence between the relative abundance of taxa found using the two techniques. DNA metabarcoding provided much greater repeatability, with a 64% taxa match compared to 28% with melissopalynology. DNA metabarcoding has the advantage over melissopalynology in that it does not require a high level of taxonomic expertise, a greater sample size can be screened and it provides greater resolution for some plant families. However, it does not provide a quantitative approach and pollen present in low levels are less likely to be detected. We investigated the plants that were frequently used by honey bees by examining the results obtained from both techniques. Plants with a broad taxonomic range were detected, covering 46 families and 25 orders, but a relatively small number of plants were consistently seen across multiple honey samples. Frequently found herbaceous species were Rubus fruticosus, Filipendula ulmaria, Taraxacum officinale, Trifolium spp., Brassica spp. and the non-native, invasive, Impatiens glandulifera. Tree pollen was frequently seen belonging to Castanea sativa, Crataegus monogyna and species of Malus, Salix and Quercus. We conclude that although honey bees are considered to be supergeneralists in their foraging choices, there are certain key species or plant groups that are particularly important in the honey bees environment. The reasons for this require further investigation in order to better understand honey bee nutritional requirements. DNA metabarcoding can be easily and widely used to investigate floral visitation in honey bees and can be adapted for use with other insects. It provides a starting point for investigating how we can better provide for the insects that we rely upon for pollination

    Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    Get PDF
    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet
    • …
    corecore