1,010 research outputs found
High-Bandwidth Low-Cost High-Speed Optical Fiber Links using Organic Light Emitting Diodes
Record-high 200 Mbps transmission using an OLED with a 31 MHz 3 dB bandwidth using a 3-tap feedforward equaliser is achieved, demonstrating the potential of such devices for use in low-cost polymer optical fiber links.EPSRC Ultra Parallel Visible Light Communication Project (EP/K00042X/1)
EPSRC Studentship 146672
Actigraphy in Human African Trypanosomiasis as a Tool for Objective Clinical Evaluation and Monitoring: A Pilot Study
The clinical picture of the parasitic disease human African trypanosomiasis (HAT, also called sleeping sickness) is dominated by sleep alterations. We here used actigraphy to evaluate patients affected by the Gambiense form of HAT. Actigraphy is based on the use of battery-run, wrist-worn devices similar to watches, widely used in middle-high income countries for ambulatory monitoring of sleep disturbances. This pilot study was motivated by the fact that the use of polysomnography, which is the gold standard technology for the evaluation of sleep disorders and has greatly contributed to the objective identification of signs of disease in HAT, faces tangible challenges in resource-limited countries where the disease is endemic. We here show that actigraphy provides objective data on the severity of sleep-wake disturbances that characterize HAT. This technique, which does not disturb the patient's routine activities and can be applied at home, could therefore represent an interesting, non-invasive tool for objective HAT clinical assessment and long-term monitoring under field conditions. The use of this method could provide an adjunct marker of HAT severity and for treatment follow-up, or be evaluated in combination with other disease biomarkers in body fluids that are currently under investigation in many laboratories
Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell–Driven Protective Response
Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens
Health Education through Analogies: Preparation of a Community for Clinical Trials of a Vaccine against Hookworm in an Endemic Area of Brazil
Conducting clinical trials of new vaccines in rural, resource-limited areas can be challenging since the people living in these areas often have high levels of illiteracy, little experience with clinical research, and limited access to routine health care. Especially difficult is obtaining informed consent for participation in this type of research and ensuring that potential participants adequately understand the potential risks and benefits of participation. The researchers have been preparing a remote field site in the northeastern part of the state of Minas Gerais, Brazil, for clinical trials of experimental hookworm vaccines. A special educational video was designed based on the method of analogies to introduce new scientific concepts related to the researchers' work and to improve knowledge of hookworm, a disease that is highly prevalent in their community. A questionnaire was administered both before and after the video was shown to a group of adults at the field site, which demonstrated the effectiveness of the video in disseminating knowledge about hookworm infection and about the vaccine being developed. Therefore, even in a rural, resource-limited area, educational tools can be specially designed that significantly improve understanding and therefore the likelihood of obtaining truly informed consent for participation in clinical research
- …